US009361102B2

a2 United States Patent

Tan et al.

US 9,361,102 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHODS FOR ENFORCING CONTROL
FLOW OF A COMPUTER PROGRAM

Applicant: LEHIGH UNIVERSITY, Bethlehem,
PA (US)

Inventors: Gang Tan, Center Valley, PA (US); Ben

Niu, Bethlehem, PA (US)

Assignee: Lehigh University, Bethleham, PA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/734,601

Filed: Jun. 9, 2015
Prior Publication Data
US 2015/0370560 Al Dec. 24, 2015

Related U.S. Application Data

Provisional application No. 62/009,539, filed on Jun.
9, 2014, provisional application No. 62/172,924, filed
on Jun. 9, 2015.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 9/30 (2006.01)

GO6F 21/62 (2013.01)

GO6F 9/45 (2006.01)

U.S. CL

CPC GO6F 9/30058 (2013.01); GO6F 8/41

(2013.01); GOGF 21/6209 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,646,050 B2* 2/2014 Vidrine GO6F 21/57
717/146

2011/0191848 Al* 82011 Zom ..o GO6F 11/00
726/22

2013/0283017 Al* 10/2013 Wilkerson GO6F 9/322
712/225

2014/0006752 Al* 1/2014 Morrow GOG6F 9/3848
712/205

2014/0283036 Al* 9/2014 Salamat ... GO6F 21/51
726/22

2015/0356294 Al* 12/2015 Tan ..o GO6F 21/53
726/22

OTHER PUBLICATIONS

Abadi, M., et al., 2005, “Control-Flow Integrity: Principles, Imple-
mentations, and Applications”, in Proc. 12th ACM Conf. on Com-
puter and Communications Security (CCS’05).

(Continued)

Primary Examiner — Philip Wang
(74) Attorney, Agent, or Firm — Saul Ewing LLP

(57) ABSTRACT

One aspect of the invention provides a method of controlling
execution of a computer program. The method comprises the
following runtime steps: parsing code to identify one or more
indirect branches; creating a branch ID data structure that
maps an indirect branch location to a branch 1D, which is the
indirect branch’s equivalence class ID; creating a target ID
data structure that maps a code address to a target 1D, which
is an equivalence class ID to which the address belongs; and
prior to execution of an indirect branch including a return
instruction located at an address: obtaining the branch ID
associated with the return address from the branch ID data
structure; obtaining the target ID associated with an actual
return address for the indirect branch from the target ID data
structure; and comparing the branch 1D and the target ID.

29 Claims, 12 Drawing Sheets

-] 030 Coc o Region i Memary
! (8102)

Indirgct Branches

Parss Code o ldentity
(518)

v

J

| Designate Region as Erecutable

Create Branch iD Data Struciure |
(8108) i

| Oblen Terget i Asseciated with Actuai Hetum Addrsss |
ior indirect Branch from Target 1D Data Structure
(s114)

| Prevent Execution of Indirect
| Branch

Perimi Execution of indivect Branch |
(8118) H

{5120}

I

US 9,361,102 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
Akritidis, P., et al., 2008, “Preventing memory error exploits with
WIT”, in Proc. 2008 IEEE Symposium on Security Privacy, 263-277.
Ansel, J., et al., 2011, “Language-Independent Sandboxing of Just-
In-Time Compilation and Self-Modifying Code”, in Proc. 32nd ACM
SIGPLAN Conf. on Programming Language Design and Implemen-
tation.
Blazakis, D., 2010, “Interpreter Exploitation”, in Proc. 4th USENIX
Conference on Offensive Technologies.
Carlini, N, et al., 2014, “ROP is Still Dangerous: Breaking Modern
Defenses”, in Proc. 23rd USENIX Security Symposium, 385-399.
Chen, P, et al., 2011, “JITDefender: A Defense against JIT Spraying
Attacks”, in Proc. 26th IFIP TC 11 International Information Security
Conference, 142-153.
Chen, P, et al., 2013, “JIT Safe: a framework against Just-in-time
spraying attacks”, 7(4) IET Information Security, 283-292.
Davi, L., et al., 2015, “HAFIX: Hardware-Assisted Flow Integrity
Extension”, in Proc. Design Automation Conf. *15.
Dean, J., et al., 1995, “Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis”, in Proc. European Confer-
ences on Object-Oriented Programming (ECOOP’95).
Dechev, D., 2011, “The ABA Problem in Multicore Data Structueres
with Collaborating Operations”, in Proc. International Conference on
Collaborative Computing: Networking, Applications and Workshar-
ing (CollaborateCom), 158-167.
Deng, L., et al.,, 2015, “ISboxing: An Instruction Substitution Based
Data Sandboxing for x86 Untrusted Libraries”, in Proc. 30th IFIP TC
11 International Conference, 386-400.
Erlingsson, U., et al.,, 2006, “XFIL:Software Guards for System
Address Spaces”, in Proc. OSDI *06: 7th USENIX Symposium on
Operating Systems Design and Implementation, 75-88.
Goktas, E., et al., 2012, “Out of Control: Overcoming Control-Flow
Integrity”, in Proc. IEEE Symp. on Security and Privacy.
Herlihy, M. P, et al., 1990, “Linearizability: A Correctness Condition
for Concurrent Objects”, 12 ACM Transactions on Programming
Languages and Systems, 463-492.
Homescu, A., etal., 2013, “Librando: Transparent Code Randomiza-
tion for Just-in-Time Compilers”, in Proc. ACM Conf. on Computer
and Communications Security (CCS’13).
Kuznetsov, V., et al., 2014, “Code-Pointer Integrity”, in Proc. 11th
USENIX Symposium on Operating Systems Design and Implemen-
tation, 147-163.
Li, J., et al, 2010, “Defeating Return-Oriented Rootkits With
‘Return-less’ Kernels”, in Proc. EuroSys’10.
McCamant, S., et al., 2006, “Evaluating SFI for a CISC Architec-
ture”, in Proc. Security *06: 15th USENIX Security Symposium,
209-224.
Mellor-Crummey, J., et al., 2003, “Scalable Reader-Writer Synchro-
nization for Shared-Memory Multiprocessors”, http://www.cs.
rochester.edu/research/synchronization/pseudocode/rw.html.
Mohan, V., et al., 2015, “Opaque Control-Flow Integrity”, in Proc.
2015 Network and Distributed System Security Symposium (NDSS
’15).
Morrisett, G., et al., 2012, “RockSalt: Better, Faster, Stronger SFI for
the x86”, in Proc. Programming Language Design and Implementa-
tion (PLDI"12).
Niu, B., et al., 2013, “Monitor Integrity Protection with Space Effi-
ciency and Separate Compilation”, in Proc. ACM Conf. on Computer
and Communications Security (CCS’13).

Niu, B, et al., 2013, “Efficient User-Space Information Flow Con-
trol”, in Proc. 8th ACM SIGSAC Symposium on Information, Com-
puter and Communications Security (ASIA CCS’13).

Niu, B., et al,, 2014, “Modular Control-Flow Integrity”, in Proc.
ACM SIGPLAN Programming Language Design and Implementa-
tion (PLDI’14).

Niu, B., et al., 2014, “RockJIT: Securing Just-In-Time Compilation
Using Modular Control-Flow Integrity”, in Proc. ACM CCS’14.
Payer, M., et al, 2015, “Fine-Grained Control-Flow Integrity
Through Binary Hardening”, in Proc. 12th Int. Conf., DIVMA 2015,
144-164.

Pewny, J., et al., 2013, “Control-Flow Restrictor: Compiler-based
CFI for iOS”, in Proc. Annual Computer Security Applications Con-
ference (ACSAC).

Sehr, D, et al., 2010, “Adapting Software Fault Isolation to Contem-
porary CPU Architectures”, in Proc. 19th USENIX Security Sympo-
sium.

Shacham, H., 2007, “The Geometry of Innocent Flesh on the Bone:
Return-into-libe without Function Calls (on the x86)”, in Proc. 14th
ACM Conf. on Computer and Communications Security (CCS’07),
552-561.

Song, C., et al., 2015, “Exploiting and Protecting Dynamic Code
Generation”, in Proc. 2015 Network and Distributed System Security
Symposium (NDSS’15).

Sun, M., et al,, 2013, “Bringing Java’s Wild Native World under
Control”, 16(3) ACM Transactions on Information and System Secu-
rity (TISSEC).

Tice, C., et al. 2014, “Enforcing Forward-Edge Control-Flow Integ-
rity in GCC & LLVM?”, in Proc. 23rd USENIX Security Symposium,
941-955.

Wahbe, R., et al., 1993, “Efficient Softwware-Based Fault Isolation”,
SIGOPS 93, 203-216.

Wang, Z., et al., 2010, “HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity”, in Proc. IEEE
Symposium on Security and Privacy, 380-395.

Wei, T., et al., 2011, “INSeRT: Protect Dynamic Code Generation
Against Spraying”, in Proc. International Conference on Information
Science and Technology, 323-328.

Wu, R, et al., 2012, “RIM: a Method to Defend from JIT Spraying
Attack”, in Proc. 2012 Seventh International Conference on Avail-
ability, Reliability and Security, 143-148.

Yee, B. Y, et al., 2009, “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code”, in Proc. 2009 30th IEEE Symposium on
Security and Privacy, 79-93.

Yee, B. Y, et al., 2012, “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code”, 30th IEEE Symposium on Security and
Privacy.

Zeng, B., etal., 2011, “Combining Control-Flow Integrity and Static
Analysis for Efficient and Validated Data Sandboxing”, in Proc. 18th
ACM Conference on Computer and Communications Security
(CCS’11).

Zhang, M., et al., 2013, Practical Control Flow Integrity & Random-
ization for Binary Executables, in 2013 IEEE Symposium on Secu-
rity and Privacy 559-573.

Zhang, M., et al., 2013, “Control Flow Integrity for COTS Binaries”,
Proceedings of the 22nd USENIX Security Symposium.

Zhang, M., etal., 2013, “Control-Flow Integrity for COTS Binaries”,
USENIX Security 2013.

* cited by examiner

U.S. Patent

Jun. 7, 2016 Sheet 1 of 12 US 9,361,102 B2

A4

L.oad Code into Region of Memory

Parse Code to ldentify

and Readable, but not Writable

3 indirect Branches
b
(5102) (S106)
¥ ¥
Designate Hegion as Exacutable Create Branch 1D Data Structure

(S104) (3108)

Code
Loading

Code
Execution

|

v

Create Target ID Data Structure
(S110)

Obtain Branch ID Associated with Return Address
from Branch 1D Data Structure
($112)

¥

Obtain Targel ID Associated with Actual Return Address
for Indirect Branch from Target ID Data Structure
(S114)

e

/'/ Branch ID .

o \
No = Target ID? 7 Yes

(5118)
\s\\\v’/

Prevent Execution of Indirect

Branch

S118) (S120)

Permit Execution of Indirect Branch

|

FIG. 1

e
-]

U.S. Patent Jun. 7, 2016 Sheet 2 of 12 US 9,361,102 B2

CFl

jele}elef Brex

cmpl SECN, 4{3%rcx) ///4» retaddr:

1 ¢ o o afetchn B

jne error /// prafetchna ECN

Jmpyg *gremw

FiG. 2
Eqguivalence Class Number Version

A s

Pl el ™
' L L §
H) i W 3
)3 £ d ;4 e

~ v ~ %

Higher 2 bvies Lower 2 bytes
4-byte aligned

FIG. 3

U.S. Patent

Module A Source

srcl.c

SrC2.C

files

Other source

Jun. 7, 2016 Sheet 3 of 12 US 9,361,102 B2
Z
K Code
¢
}f
7
MCHT
» Module A Data

s | Metadata

FiG. 4

User Space

indirect

. Module C
Branches
Module A /

\ Module B

{Other modules

A

Systermn Calls

Operating System Kernel

Hardware Driver

CPu

Other

w Mory 3{'}
Memo Y Qrage H@rdv&‘a{e

FIG. 5

US 9,361,102 B2

Sheet 4 of 12

Jun. 7,2016

U.S. Patent

LADE TR0

GARE 0 uonpumueg weilod
e UINS TUEMEY W UBS SR Eay
VOREDHI0N MOBUOSESS Ay

9 'oOld

O

EBRIEL B 01 IBI5U

% mum.ﬂﬁm“m. S rw,w.ux.mu FImID
BUY H S5 O STIGEL 008 By
SUOSUOT UIHIPTUBLALISUE By

243
i
”.A

!
3
&

yaueg

1ranpul
pajUatUNSU

Uy U

LY
LOIRAE 10800
JO UGRIngsY

HHYSUR IG-UON

U.S. Patent Jun. 7, 2016 Sheet 5 of 12 US 9,361,102 B2

12% F==============mmmmmmo--—{ 1 x86-32 EXN
k > x86-64

9%
6%
3%
0%

18%

12%

6%

0%

U.S. Patent Jun. 7, 2016 Sheet 6 of 12 US 9,361,102 B2

o e A e A R S R O R R N R R G R R SRR R R O e d

3
HY Complier e g e Hx‘l‘;t;} (RW X3
[H

H

§

§

3

H

b Baseline
: Exeouior
3

¢

t

3

g

§

$

Opstiniing
Cosapiley

Sandboy
ummm»wwmmmmmo«mmmmmmww ?»“MMMMM”WMW“MNWQ

HT Compiley = i Code He HR"X

Basclive Garbage
Eaecutor] Unilector

Cptiuzing Basiv
Compilyy Services

LEE]

Sl

A A A AR AR VA WA A A A A A AR

B WA SAR SRR AR SRR AAR ARA SAR ARR ARP RAR AP
o
g

Mapped 1o the
sane phvsical pa

[CEntries] [TEutvie:

.

S i o e Soin g S N iy S i i A el Nk ot oy i ok AT SOIIYY,

ON A0t 00K BN OX WK WOC 000 300 WL W 0 0N

Shadow Cade Heap (HW 1]

Hled Code
Brsstabior amd e
Moditier

o 3k
Yerifier

Upadate

%o(o»o)o;i
sagneney

MOFT Tables

W W MM W W M WM WM WM MM W M

RBockdIT

e {Odle Pinission e s oo {Coitrod Flow Transfer

H
H
H
H
H
§
H
H

FiG. 10

U.S. Patent Jun. 7, 2016 Sheet 7 of 12 US 9,361,102 B2

__cxa_throw

1) fie ++ abi
Ltry: /

call_cxa_throw __gx_personality_v0 T l (2):_Unwind_RaiseException

Lcatch:

ol printf \

(4): Lcatch libunwind
1%
x86-32 =
o x86-64 ==
9%
6%
3%

0%

U.S. Patent Jun. 7, 2016 Sheet 8 of 12 US 9,361,102 B2

L
20%

10%

0%

U.S. Patent

Jun. 7, 2016 Sheet 9 of 12

US 9,361,102 B2

YVirtual Address Space

Unmapped rezion

——+ Page mapping

SCFG/ECEG

U runtime

R S w Phvsical Pages

F)

M, T

Diata (RW) !

!
: ; T /
R RS
ERRRRIR. : !
-~
=N ok Ee o ¢ -
Sandbox <

Ploysical Pages

U.S. Patent Jun. 7, 2016 Sheet 10 of 12 US 9,361,102 B2

o CHECKSPRAM wee |
© 105 20 308 40s BOz o0z VOs 8D 8Us 100s 110s 1208 1303 1408

FIG. 17

U.S. Patent Jun. 7, 2016 Sheet 11 of 12

US 9,361,102 B2

Qeians -

U.S. Patent Jun. 7, 2016 Sheet 12 of 12 US 9,361,102 B2

71-CFl &4
MCFI i

\Q\@@A@\
N
N
Q)‘Z; Q’)
B0 - ===~ ==~ =~ m = m o oo
50% b m =~ mmm - m ________________ n1-CFl B4 | _
40% __ : MCF| _
30% |--mmmmmmmmmmmmmm oo 3 % RREREEEREEREEEEEEES
] TR R E} ---------
10% f=========m=mmmmmmmmomreso oo < AF T -k S - - - - - K ke -----
o o o5 31 e D
1] e = u
TP & 2 R ADE OASF & & L O &
PR 4@ o e o S S S QD
TG T Fe T8 ¢ TS & &
< & R N RN
A\ 3

US 9,361,102 B2

1
METHODS FOR ENFORCING CONTROL
FLOW OF A COMPUTER PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority under 35 U.S.C. §119(e) to
U.S. Provisional Patent Application Ser. Nos. 62/009,539,
filed Jun. 9, 2014, and 62/172,924, filed Jun. 9, 2015. The
entire content of each of these applications is hereby incor-
porated herein by reference.

STATEMENT REGARDING GOVERNMENT
SUPPORT

This invention was made with government support under
U.S. National Science Foundation Award No. CCF-1149211.
The U.S. government has certain rights in the invention.

BACKGROUND OF THE INVENTION

Many software attacks hijack the control flow of a program
to transfer to attacker-injected code, or to a dangerous library
function as in return-to-libe attacks, or to some existing code
snippet of the program as in Return-Oriented Programming
(ROP) attacks.

SUMMARY OF THE INVENTION

One aspect of the invention provides a method of control-
ling execution of a computer program. The method comprises
the following runtime steps: parsing code to identify one or
more indirect branches; creating a branch 1D data structure
that maps an indirect branch location to a branch 1D, which is
the indirect branch’s equivalence class ID; creating a target
ID data structure that maps a code address to a target 1D,
which is an equivalence class ID to which the address
belongs; and prior to execution of an indirect branch includ-
ing a return instruction located at an address: obtaining the
branch ID associated with the return address from the branch
1D data structure; obtaining the target ID associated with an
actual return address for the indirect branch from the target ID
data structure; comparing the branch ID and the target ID; and
if the branch ID and the target ID differ, preventing execution
of the indirect branch.

This aspect of the invention can have a variety of embodi-
ments. The code can reside in multiple modules. The multiple
modules can be dynamically loaded. Each of the multiple
modules can be separately compiled prior to dynamic load-
ing. Fach of the multiple modules can be separately instru-
mented prior to dynamic loading.

Each step can be performed at runtime.

The method can further include, if the branch ID and the
target ID match, permitting execution of the indirect branch.

The branch 1D data structure can be an array.

The target ID data structure can be an array of target IDs
indexed by code addresses. The array can contain ‘0’ bits at an
index associated with a code address if the code address is not
a possible indirect-branch target.

The branch IDs and the target IDs can be stored with
special bit values in the least significant bit of each byte
encoding.

The method can further include: loading the code into a
region of memory; and designating that region as executable
and readable, but not writable.

The branch ID data structure and the target ID data struc-
ture can be stored separately from the code.

10

15

20

25

30

35

40

45

50

55

60

65

2

The code can be written in C. The code can be written in
C++.

Another aspect of the invention provides a method of con-
trolling execution of a computer program by a Just-In-Time
(JIT) compiler. The method includes: maintaining a shadow
code heap outside the JIT compiler’s sandbox the JIT com-
piler’s code heap stored in the JIT compiler’s sandbox; as a
code region is loaded into the shadow code heap and the JIT
compiler’s code heap: parsing the code region to identify one
or more pseudo-instruction start addresses, indirect branch
target addresses, and direct branch target addresses and add-
ing those addresses to a pseudo-instruction start addresses
(PSA) set, an indirect branch target addresses (IBT) set,and a
direct branch target (DBT) addresses set; verifying that: all
members of the IBT set and the DBT set are also members of
the PSA set; all indirect branches and memory-write instruc-
tions in the new code region are appropriately instrumented;
all direct branches in the new code region jump to addresses
inthe DBT set; and the new code region contains only instruc-
tions corresponding to the JIT compiler; upon successful
completion ofthe verifying step, copying the new coderegion
into the shadow code heap: updating a branch ID data struc-
ture that maps an indirect branch location to a branch ID and
a target ID data structure that maps an address to a target ID
with the addresses from the IBT set; and prior to execution of
an indirect branch including a return instruction located at an
address: obtaining the branch ID associated with the return
address from the branch ID data structure; obtaining the target
ID associated with an actual return address for the indirect
branch from the target ID data structure; comparing the
branch ID and the target ID; and if the branch ID and the target
1D differ, preventing execution of the indirect branch.

This aspect of the invention can have a variety of embodi-
ments. The shadow code heap can be readable and writable,
but not executable. The pseudo-instruction start addresses,
the indirect branch target addresses, and the direct branch
target addresses can be stored as bitmaps. The verifying step
can further include iterating through a Deterministic Finite
Automata (DFA) of all possible allowed instruction encod-
ing. The DFA can be generated from a trie structure of all
possible allowed instruction encoding.

The method can further include, upon receiving a request
to delete the code region from the shadow code heap and the
JIT compiler’s code heap: determining whether direct
branches outside of the code region target any instructions
within the code region; removing code-region-related entries
from the branch ID data structure and the target 1D data
structure; determining whether any threads are running or
sleeping in the code region. The determining whether any
threads are running or sleeping in the code region step can
further include waiting until each thread enters runtime code
after execution of the removing step. The determining
whether any threads are running or sleeping in the code region
step can further include: checking each one of a plurality of
counters, each counter associated one of the threads after
execution of the removing step; incrementing the associated
counter each time the associated thread enters the runtime
code; and checking whether each one of a plurality of
counters has changed.

The method can further include: generating a fine-grained
control flow graph (CFG) for the JIT compiler prior to runt-
ime.

Another aspect of the invention provides a method of con-
trolling execution of a computer program. The method
includes the following runtime steps: parsing code to identify
one or more indirect branches; creating a branch ID data
structure that maps an indirect branch location to a branch ID,

US 9,361,102 B2

3

which is the indirect branch’s equivalence class ID; creating
a target ID data structure that maps an address to a target ID,
which is an equivalence class ID to which the address
belongs; and prior to execution of an indirect branch includ-
ing a return instruction located at an address: obtaining the
branch ID associated with the return address from the branch
1D data structure; obtaining the target ID associated with an
actual return address for the indirect branch from the target ID
data structure; marking a link between the branch ID and the
return address as active in the branch ID data structure and the
target ID data structure; comparing the branch ID and the
target ID; and if the branch ID and the target ID differ, pre-
venting execution of the indirect branch.

This aspect of the invention can have a variety of embodi-
ments. The method can further include, if the branch ID and
the target ID match, permitting execution of the indirect
branch. The marking step can include invoking an idempotent
operation. The branch ID data structure can be an array. The
target ID data structure can be an array.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the present invention, refer-
ence is made to the following detailed description taken in
conjunction with the accompanying drawing figures wherein
like reference characters denote corresponding parts through-
out the several views.

FIG. 1 depicts a method of controlling execution of a
computer program according to an embodiment of the inven-
tion.

FIG. 2 depicts an example of the classic CFI instrumenta-
tion.

FIG. 3 depicts MCFI ID encoding according to an embodi-
ment of the invention.

FIG. 4 depicts a schematic of module creation according to
an embodiment of the invention.

FIG. 5 depicts a schematic of a system for implementing
embodiments of the invention.

FIG. 6 depicts a method for detecting a CFI violation
according to an embodiment of the invention.

FIG. 7 depicts MCFI overhead on SPECCPU2006 C
benchmarks for an embodiment of the invention. No update
transaction was concurrently running during this test.

FIG. 8 depicts MCFI overhead on SPECCPU2006 C
benchmarks for an embodiment of the invention. Update
transactions are executed at the frequency of 50 Hz.

FIG. 9 depicts the architecture of modern JIT compilers.

FIG. 10 depicts the architecture of the RockJIT system
according to embodiment of the invention.

FIG. 11 depicts control transfers during C++ table-based
exception handling according to an embodiment of the inven-
tion.

FIG. 12 depicts MCFI’s performance overhead on SPEC-
CPU2006 C++ benchmarks according to an embodiment of
the invention.

FIG. 13 depicts performance overhead imposed by Rock-
JIT-hardened V8 on Octane 2 benchmarks according to an
embodiment of the invention.

FIG. 14 depicts performance overhead imposed by Rock-
JIT-hardened V8 on Kraken 1.1 benchmarks.

FIG. 15 depicts memory layout of CFI according to an
embodiment of the invention. “R”, “W” and “X” appearing in
parentheses denote the Readable, Writable, and eXecutable
memory page permissions, respectively. The “RO-" prefix
means Read-Only.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 16 depicts the growth of targeted addresses for the
400.perlbench benchmark according to an embodiment of the
invention.

FIG. 17 depicts the growth of activated target addresses for
the 403.gcc benchmark according to an embodiment of the
invention.

FIG. 18 depicts the growth of activated target addresses for
the GOOGLE® V8 JavaScript engine according to an
embodiment of the invention.

FIG. 19 depicts the growth of activated target addresses in
the NGINX® HTTP server according to an embodiment of
the invention.

FIG. 20 depicts CF1and MCFI runtime overhead on SPEC-
CPU2006 C/C++ benchmarks according to an embodiment
of the invention.

FIG. 21 depicts CFI and MCFI runtime overhead on
Octane 2 benchmarks using the GOOGLE® V8 JavaScript
engine according to an embodiment of the invention.

DEFINITIONS

The instant invention is most clearly understood with ref-
erence to the following definitions:

As used herein, the singular form “a,” “an,” and “the”
include plural references unless the context clearly dictates
otherwise.

Unless specifically stated or obvious from context, as used
herein, the term “about” is understood as within a range of
normal tolerance in the art, for example within 2 standard
deviations of the mean. “About” can be understood as within
10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%,
0.05%, or 0.01% of the stated value. Unless otherwise clear
from context, all numerical values provided herein are modi-
fied by the term about.

As used in the specification and claims, the terms “com-
prises,” “comprising,” “containing,” “having,” and the like
can have the meaning ascribed to them in U.S. patent law and
can mean “includes,” “including,” and the like.

Unless specifically stated or obvious from context, the term
“or,” as used herein, is understood to be inclusive.

Ranges provided herein are understood to be shorthand for
all of the values within the range. For example, a range of 1 to
50is understood to include any number, combination of num-
bers, or sub-range from the group consisting 1,2,3,4,5,6,7,
8,9,10,11,12,13,14,15,16,17, 18,19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40, 41,
42,43,44,45,46,47,48,49,0r 50 (as well as fractions thereof
unless the context clearly dictates otherwise).

DETAILED DESCRIPTION OF THE INVENTION

Control-flow attacks can be mitigated by Control-Flow
Integrity (CFI). Control-Flow Integrity rewrites a computer
program to check indirect branches, i.e., return instructions,
indirect jumps (jumps via a register or a memory operand),
and indirect calls (calls via a register or a memory operand).
As aresult, the program’s control flow is guaranteed to follow
a given Control-Flow Graph (CFQG), even under attack.

However, CF1 has not seen wide adoption since its debut in
2005. One important factor is the lack of separate compilation
capabilities. “Separate compilation” refers to the ability of a
compiler to separately compile modules of an application and
link the compiled modules. In the context of CF1, it refers to
the ability to perform instrumentation of modules separately,
without considering other modules, and to link instrumented
modules into a working executable. Unfortunately, past CFI
techniques require all modules of an application, including

US 9,361,102 B2

5

libraries, to be available at instrumentation time. For instance,
the classic CFI instrumentation inserts identifiers (represent-
ing a class of indirect branches and targets) before branch
targets and checks before indirect branches to ensure that they
jump to targets specified in the CFG. The identifiers are
embedded in instructions and cannot appear in the rest of the
code. However, this property cannot be guaranteed without
inspecting the whole program. Other CFI instrumentation
techniques also do not support separate compilation.

The lack of separate compilation is a severe restriction in
practice because libraries cannot be instrumented once and
reused across programs. CFI implies that each program must
include its own instrumented version of libraries. This is
especially cumbersome for Dynamic-Link Libraries (DLLs),
which are designed to be reused.

Modular Control-Flow Integrity

Referring now to FIG. 1, one aspect of the invention pro-
vides a method 100 of controlling execution of a computer
program. Steps S102-S110 are generally performed when-
ever code is loaded for execution, e.g., at startup of a program
or when a new module is loaded during execution of the
program. Steps S112-S120 are generally performed when the
code is executed (e.g., by a processor or CPU).

Advantageously, method 100 can control execution of a
computer program having code residing in multiple modules
that can be separately compiled and/or instrumented prior to
dynamic loading of one or more modules and performance of
method 100 at runtime. (As discussed below in the context of
FIG. 2, the term “instrumentation” refers to the modification
of code to enforce a CFI policy.)

In step S102, code can be loaded into a region memory. The
code can be machine code or object code and can be written
in a programming language such as assembly, C, C++, C#,
Java, and the like. Memory can be volatile or non-volatile
memory. In some embodiments, the code is loaded into a
“sandbox”, i.e., a virtual container in which untrusted pro-
grams can be safely run.

In step S104, the region can be optionally designated as
executable and readable, but not writable. This prevents
modification of the code.

In step S106, the code can be parsed to identify indirect
branches. Indirect branches can include return instructions,
indirect jumps (jumps via a register or a memory operand),
and indirect calls (calls via a register or a memory operand).

In step S108, a branch ID data structure is created. The
branch ID data structure can map an indirect branch location
to a branch ID. The branch ID can be the indirect branch’s
equivalence class ID.

In step S110, atarget ID data structure is created. The target
1D data structure can map an address to a target ID. The target
ID can be the equivalence class ID to which the address
belongs.

The branch ID data structure and target ID data structure
can be stored separately from the program code. The branch
1D data structure and target ID data structure can be a table or
an array. In one embodiment, the target ID data structure is an
array of target IDs indexed by code addresses. If the code
address is not a possible indirect-branch target, the index for
the code address can contain ‘0’ bits. In some embodiments,
the branch IDs and/or the target IDs are encoded and stored in
a particular format. For example, the branch IDs and/or the
target IDs can be stored with special bit values in the least
significant bit of each byte encoding. For example, FIG. 3
depicts a 4-byte encoding in which the bytes (considered
from high to low bytes) include 0, 0, 0, and 1 in the least
significant bit of each byte.

10

15

20

25

30

35

40

45

50

55

60

65

6

After the code is loaded and the branch ID data structure
and target ID data structure are created, the code is executed
by a processor or CPU. Prior to execution of an indirect
branch, the branch ID associated with the return address is
obtained from the branch ID data structure in step S112. In
step S114, the target ID associated with an actual return
address for the indirect branch is obtained from the target ID
data structure. In step S116, the branch ID and the target ID
are compared (e.g., by bitwise XORing or other logical com-
parison). If the branch 1D does not equal the target ID, the
indirect branch is prevented from execution in step S118. If
the branch ID does equal the target ID, execution of the
indirect branch is permitted in step S120 and the execution of
the program can continue, e.g., by executing the code until
another indirect branch is reached at step S112 will be per-
formed or until another module is loaded at which point step
S102 will be performed for the new combination of modules.

Embodiments of the invention provide methods, computer-
readable media, and systems for implementing Modular Con-
trol-Flow Integrity (MCFI), which extends CFI with the sup-
port of separate compilation. In MCFI, an application is
divided into multiple modules (e.g., one module can be a
library). Each module contains code, data, and auxiliary
information that helps its linking with other modules and the
generation of the module’s CFG. Code of a module is instru-
mented separately for control-flow integrity. When modules
are linked either statically or dynamically, their auxiliary
information is combined and used to generate a new CFG,
which is the new control-flow policy for the combined mod-
ule after linking. The new policy may allow an indirect branch
to target more destinations. For example, suppose a function
named f in module M, contains a return instruction. M,’s
internal CFG allows the return instruction to return to any
caller of fin M, . After M, is linked with a second module M,,,
the return instruction can also return to any caller of fin M,.
The important point is that the control-flow policy changes
during linking, implying that the policy has to be updated
during runtime when loading a dynamically linked library.

The dynamic nature of the control-flow policy when link-
ing libraries poses two main challenges in designing MCFI.
First, the policy should be safely and efficiently updated at
runtime in the presence of multithreading, e.g., when one
thread uses the current policy to decide whether an indirect
branch is allowed while another thread concurrently updates
the policy to a new one when loading code. Second, a new
policy should be generated with high precision when modules
are combined.

To address the first challenge, embodiments of the inven-
tion represent the CFG in separate tables outside of the code
region. To achieve a smooth transition from the old policy to
the new one, embodiments of the invention implement table-
check and table-update transactions. For example, embodi-
ments of the invention implement a lightweight Software
Transactional Memory (STM) implementation that performs
table transactions efficiently in MCFI’s context.

To address the second challenge, embodiments of the
invention augment modules with auxiliary type information
and use the type information for CFG generation. Embodi-
ments of the invention compile a module’s source code using
a modified LLVM compiler (available from www.llvm.org)
to acquire the type information.

MCFI is the first efficient CFI instrumentation that sup-
ports separate compilation. It addresses the challenge of how
to support dynamically linked libraries for CFI in the pres-
ence of multithreaded code, using a novel approach based on
transactions. MCFI can greatly improve CFI’s practicality.

US 9,361,102 B2

7

Embodiments of the invention also provide a simple yet
effective way of generating CFGs for C programs based on
type matching. Embodiments of the invention are efficient
and can be used during dynamic linking. Embodiments of the
invention generate relatively precise CFGs, while breaking
only small portions of C programs. Empirical evidence shows
that C programs can be made to be compatible with the
CFG-generation process described herein with no or small
changes to the source code.

In evaluating MCFI, Applicant implemented a compilation
toolchain that instruments C programs for x86. Experiments
on SPECCPU2006 benchmarks show that MCFI imposes
about 5% execution-time overhead on average.

Control Flow Integrity

A CFI policy for a program is a CFG whose nodes are
instructions and whose edges connect instructions to allowed
next instructions in control flow. Code C respects its CFI
policy P if and only if all control transfers in C, when
executed, respect the graph P.

Hereafter, the term “CFI” to refer to the classic CFI as
described in M. Abadi et al., “Control-flow integrity,” in 12¢/
ACM Conference on Computer and Communications Secu-
rity (CCS), 340-53 (2005). CFI uses a combination of static
and dynamic checks for enforcement. For a direct branch, a
static verifier is used to check if its targets are allowed by the
CFG. For an indirect branch, CFI inserts runtime checks into
the program to ensure that the control transfer is consistent
with the CFG. The focus of CFI is how to instrument indirect
branches.

First, the set of indirect branch targets is partitioned into
equivalence classes. Two target addresses are equivalent if
there is an indirect branch that can jump to both targets
according to the CFG. An indirect branch is allowed to jump
to any destination in the same equivalence class. If two indi-
rect branches target two sets of destinations and those two sets
are not disjoint, the two sets are merged into one equivalence
class. This results in some CFG precision loss.

After partitioning, each equivalence class is assigned a
unique number. An address’s Equivalence-Class Number
(ECN) refers to the number given to the equivalence class to
which the address belongs. The branch ECN of an indirect
branch refers to the ECN of the equivalence class to whose
addresses the branch can jump. The target ECN of an indirect
branch is a dynamic notion and refers to the ECN of the
equivalence class in which the actual destination is when the
indirect branch runs in a specific state.

For an indirect branch to respect the CFI policy, its branch
ECN must be the same as its target ECN. This is enforced by
the CFl instrumentation. FIG. 2 shows the instrumentation of
a return instruction that jumps to the address retaddr.

Atthe target, retaddr, CF1 inserts a side-effect-free instruc-
tion with the target address’s ECN embedded. The example
uses the prefetchnta instruction, which performs memory
prefetching.

The return instruction is rewritten to (1) pop the return
address to a temporary register (% rcx in this case); (2)
retrieve the target ECN and compare it with the branch ECN
using cmpl and jne (the address % rcx+4 points to the middle
of prefetchnta if the correct return address is on the stack); (3)
transfer control the compared ECNs are the same. In this
technique, ECNss are embedded in the non-writable code sec-
tion. Consequently, an ECN must be unique and cannot over-
lap with the encoding of instructions in the rest of the code.
Otherwise, it would be possible for an indirect branch to jump
to more targets than allowed. The global uniqueness require-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment prevents the classic CFI from supporting separate com-
pilation because the rewriting cannot be performed without
all modules.
MCFI Overview

Embodiments of MCFI enforce fine-grained CFI.
Threat Model

MCFTI adopts CFI’s concurrent attacker model as described
in Abadi. The model allows a strong adversary, which is
treated as a separate thread running in parallel with user
threads. The attacker thread can read and write any memory
(subject to memory page protection). Consequently, the
attacker can corrupt writable memory between any two
instructions in the user program. It is assumed that machine
registers of a thread cannot be directly modified by the
attacker thread. However, the attacker can still affect registers
indirectly by corrupting memory. As an example, if the pro-
gram reads from a region of writable memory to a register,
then the register’s value is under the attacker’s control
because the attacker can write any value to that region of
memory. In addition, to prevent arbitrary code execution, a
trusted MCFI runtime enforces the invariant that no memory
regions are both writable and executable at the same time. The
invariant is enforced when an application is initially loaded by
the runtime. The runtime sets up a separate code and data
region. Code is loaded into the code region, which is execut-
able and readable but not writable. Note that the code region
can include some read-only data such as jump tables. The data
region is readable and certain parts are writable, but not
executable. The invariant also holds when dynamically link-
ing libraries. New libraries are loaded into unoccupied parts
in the code and data region.
1D Tables

MCFI partitions indirect branch targets into equivalence
classes and labels each with an ECN. To remove the global
uniqueness requirement in the classic CFI, ECNs are pulled
out of the code section and stored in a runtime data structure
consisting of two separate tables. These tables are conceptu-
ally maps from addresses to IDs. An ID is a unique identifier
associated with an address. It contains an ECN and other
components (the format of an ID is detailed later). The branch
1D table, called the Bary table, maps from an indirect-branch
location to the location’s branch 1D, which is the identifier of
the equivalence class of addresses the branch is allowed to
jump to. The target ID table, called the Tary table, maps from
an address to the identifier of the equivalence class to which
the address belongs.

With the ID tables, instrumenting an indirect branch is
straightforward. Take the example of a return instruction
located at address 1. The instrumentation can first use the Bary
table to look up the branch ID for address 1, use the Tary table
to look up the target ID for the actual return address, and
check whether the branch ID is the same as the target ID.

Separating IDs from code has several benefits. First, IDs in
the tables can overlap with the numbers in the code section,
eliminating the global ID uniqueness assumption in the clas-
sic CFI. Second, the instrumentation code before indirect
branches is parameterized over the ID tables and remains the
same once loaded. Therefore, code pages for applications and
libraries can be shared among processes, saving memory and
application launch time. Third, centralized ID tables enable
favorable memory cache eftect and fast table updates using
parallel memory-copy mechanisms of the CPU.

Table Access Transactions

The ID tables can be accessed concurrently by multiple
threads. One thread may dynamically load a module, which
triggers the generation ofanew CFG. Consequently, a new set
of IDs based on the new CFG needs to be put into the ID

US 9,361,102 B2

9

tables. At the same time, another thread may execute an
indirect branch, which requires reading IDs from the tables.
Since concurrent reads and writes are possible, a synchroni-
zation mechanism must be designed for maintaining the con-
sistency of tables. Otherwise, the tables may reach some
intermediate state that allows for illegal control-flow trans-
fers. A simple lock-based scheme for accessing tables could
be adopted, but it would incur a large performance penalty
due to MCFI’s table-read-dominant workloads: dynamic
linking is a rare event compared to the use of an indirect
branch (especially return instructions). (Even in Just-In-Time
(JIT) compilation environments such as the Google V8 Java-
Script engine, which optimizes code on-the-fly, the number of
indirect branch execution is roughly 108 times of CFG
updates triggered by dynamic code installation.)

Embodiments of the invention wrap table operations into
transactions and use a custom form of Software Transactional
Memory (STM) to achieve safety and efficiency. This STM
implementation uses two kinds of transactions.

The first kind is a check transaction (TxCheck). This trans-
action is executed before an indirect branch. Given the
address where the indirect branch is located and the address
that the indirect branch targets, the transaction reads the
branch ID and the target ID from the tables, compares the two
IDs, and takes actions if the IDs do not match. This transac-
tion performs only table reads.

The second kind is am update transaction (TxUpdate). This
transaction is executed during dynamic linking. Given the
new [Ds generated from the new CFG after linking a library,
this transaction updates the Bary and Tary tables.

A transaction-based approach is more efficient because the
check transaction performs speculative table reads, assuming
there are no other threads performing concurrent writes; if the
assumption is wrong, it aborts and retries. This technique
matches the context well and provides needed efficiency.
Further details about ID tables and table transactions are
provided in the “ID Tables and Transactions” section herein.
Module Linking

An MCFI module not only contains code and data, but also
auxiliary information. There is a range of options about what
auxiliary information to attach to a module for CFG genera-
tion. In general, the more information that a module carries,
the better precision of the generated CFG. MCFI adopts type
information, which tells the types of functions and function
pointers. The type information is used to generate a CFG for
modules. An indirect call via a function pointer can invoke a
function as long as the types of the function pointer and the
function match. This approach can generate relatively precise
CFGs, while requiring modest effort to adapt the source code.
1D Tables and Transactions

The detailed design of ID tables and transactions that
access the tables is described next including the design for the
x86 architecture, including x86-32 and x86-64. Other archi-
tectures such as ARM can also be supported with small
adjustments.
1D Tables

As discussed, MCFI maintains two tables. Both map from
addresses to IDs. The Bary table holds branch IDs and the
Tary table holds target IDs. An ID is four-byte long, visual-
ized in FIG. 3. An ID is stored in a four-byte aligned memory
address so that a single memory access instruction can atomi-
cally access it.

An MCFI ID contains several components. The first com-
ponent is composed of the least significant bits in the four
bytes. They are reserved and have the special bit values 0, 0,
0, and 1, from high to low bytes. These reserved bits are to
prevent the use of an address that points to the middle of an ID

15

30

40

45

50

55

10

to look up the tables; more on this will be discussed shortly. A
valid ID is defined as an ID that has the special bit values at the
reserved-bit positions.

An MCFI ID also contains a fourteen-bit target-address
ECN in the higher two bytes and a fourteen-bit version num-
ber in the lower two bytes. The ECN is the same as in the
classic CFI and tells to which equivalence class the address
associated with the ID belongs. The ID-encoding scheme
allows 2'*=16,384 different equivalence classes in programs.
This is sufficient for even large programs, as shown in the
experiments described herein. The version number in an ID
supports transactions and is used to detect whether a check
transaction should be aborted and retried. The ID-encoding
also allows 2'# different version numbers. The implementa-
tion of transactions and the sufficiency of 2'* version numbers
are discussed in the “Table Transactions” section herein.

The representation of Bary and Tary tables during runtime
is discussed next. Since the Bary and Tary tables are queried
frequently, MCFI should utilize an appropriate data structure
to minimize the ID-access time. There is a range of potential
data structures. A simple approach is to use a hash map that
maps from addresses to IDs. This is space efficient, but the
downside is that a table access involves many instructions for
computing the hash function and even more when there is a
hash collision.

MCFI adopts a simple representation of the ID tables. Both
Bary and Tary tables are represented using arrays. The Tary
table is an array of IDs indexed by code addresses. If a code
address is not a possible indirect-branch target, then the cor-
responding array entry contains all zeros; otherwise, it con-
tains the ID of the code address. This design clearly enables
efficient look-ups and updates.

In the case that there is an entry in the table for every code
address, the size of the table is four times of the code size
since each ID is four bytes long. To have a smaller Tary table,
embodiments of the invention use a space-optimization tech-
nique that inserts extra no-op instructions into the program to
force indirect-branch targets to be four-byte aligned. As a
result, the table needs entries only for four-byte aligned code
addresses and the size of the Tary table is the same as the code
size. During runtime, the Tary table causes only a small
increase on the runtime memory footprint because the major-
ity of memory consumed by a program holds runtime data in
the heap.

Moreover, embodiments of the invention should prevent
programs from using indirect-branch targets that are not four-
byte aligned. The reserved bits in an ID enforce this require-
ment. (Alternatively, an and instruction can be inserted to
align the indirect-branch targets by clearing the least two
bits.) In particular, if an indirect branch uses an address that is
not four-byte aligned, then the four-byte target ID loaded
from the Tary table will not be valid (i.e., it will not have the
special bit values 0, 0, 0, and 1 in the least-significant bits).
Then, the comparison with the branch ID will fail because the
branch ID loaded from the Bary table is always valid as
discussed next. The Bary table could use the same design as
the Tary table, but embodiments of the invention use an opti-
mization to increase its space and time efficiency. Recall that
the Bary table conceptually maps indirect-branch locations to
branch IDs. One observation is that instruction addresses are
known once they are loaded in memory. Therefore, when a
module is loaded into the code region, MCFI’s loader patches
the code to embed constant Bary table indexes that corre-
spond to correct branch IDs in branch-1D read instructions. In
this design, the Bary table does not need entries for code
addresses that do not hold indirect branches. (In contrast, the
Tary table has all-zero entries even for addresses that are

US 9,361,102 B2

11

illegal indirect-branch targets). Furthermore, all branch IDs
loaded from the Bary table are valid IDs as long as the loader
embeds the correct table indexes in branch-ID read instruc-
tions.

Finally, the tables should be protected at runtime so that
application code cannot directly change them. Embodiments
of'the invention adopt MIP’s design described in B. Niu & G.
Tan, “Monitor integrity protection with space efficiency and
separate compilation,” in Proc. of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS
’13) 199-210, (2013) to restrict the memory region where
application code can write so that it cannot directly modify
the tables. A brief summary of this code sandboxing tech-
nique is as follows. On x86-32, memory segmentation is used
as described in NaCl by B. Yee et al., “Native client: A
sandbox for portable, untrusted x86 native code,” in /EEE
Symposium on Security and Privacy (S&P) (2009). A 1 GB
segment is reserved for running the application code and
another 1 GB segment is reserved for the table region. x86-64,
however, does not support memory segmentation. Instead,
memory writes are instrumented so that they are restricted to
the [0, 4 GB) memory region. Another 4 GB memory region
is reserved for tables. To access table entries efficiently, a
spare segment register is used to be the base address of the
table region: % fs is used in x86-32 and % gs in x86-64.
Table Transactions

Embodiments of the invention can utilize standard STM
algorithms to implement the transactions. However, those
algorithms are generic and separate meta-data (e.g., the ver-
sion numbers) from real data (the ECNs). As a result, they
require multiple instructions for retrieving meta-data and real
data, and multiple instructions for comparing meta-data and
real data to check for transaction failure and CFI violation.
Applicant micro-benchmarked the TML algorithm, a state-
of-the-art STM algorithm particularly optimized for read-
dominant workloads described in L. Dales sandro et al.,
“Transactional mutex locks,” in Proceedings of the 16th
International Euro-Par Conference on Parallel Processing:
Part I (Euro-Par °10) 2-13 (2010), and found its slowdown is
around 100% more than MCFI’s custom transaction algo-
rithm, which puts meta-data and real data in a single word.
The compact representation enables MCFI to use a single
instruction to retrieve both meta- and real-data and a single
instruction to check for transaction failure.

Update Transactions

When a library is dynamically linked, MCFI produces a
new CFG for the program after linking. The “Module Link-
ing” section herein presents MCFI’s method for generating
the new CFG; this section is agnostic to the details of such a
method. Based on the new CFG, a new set of Equivalence
Class Numbers (ECNs) is assigned to equivalence classes
induced by the new CFG. The rest of this section assumes the
existence of two functions that return the new ECNs.

The getBaryECN function takes a code address as input
and, if there is an indirect branch at that address, returns the
branch ECN of the indirect branch. The getBaryECN func-
tion returns a negative number if there is no indirect branch at
the address.

The getTaryECN function takes a code address as input
and, if the address is a possible indirect-branch target, returns
the address’s ECN (i.e., the ECN of the equivalence class to
which the address belongs). The getTaryECN function
returns a negative number if the code is not a possible indi-
rect-branch target.

Appendix A presents the pseudocode that implements
update transactions. Itis implemented inside MCFI’s runtime
and isused by MCFI’s dynamic linker to update the ID tables.

10

15

20

25

30

35

40

45

50

55

60

65

12

An update transaction starts by acquiring a global update lock
and incrementing a global version number. The lock serial-
izes update transactions among threads. This simple design
takes advantage of the fact that update transactions are rare in
practice and allowing concurrency among update transac-
tions does not gain much efficiency. The global update lock
does not prevent concurrency between update transactions
and check transactions.

The update transaction performs table updates in two steps:
first update the Tary table, and then the Bary table. The sepa-
ration of the two steps is achieved by a memory write barrier
at line 5, which guarantees that all memory writes to Tary
finish before any memory write to Bary. Bary and Tary table
updates cannot be interleaved; otherwise, at some intermedi-
ate state in an update transaction, some IDs in the Tary and
Bary tables would have the old version and some IDs would
have the new version. Consequently, check transactions
would use different versions of CFGs for different indirect
branches. By updating one table first before updating the
other, check transactions either use the old CFG or the new
CFG for all indirect branches at all times.

Function updTaryTable first constructs a new Tary table
(line 11). Constants CodeBase and CodeLimit are the code
region base and limit, respectively. The table construction
process iterates each four-byte aligned code address, invokes
getBaryECN, and updates the appropriate entry in the table.
The auxiliary function setECNAndVer updates the table entry
with the ECN and the global version number; its code is
omitted for brevity. After construction, the new Tary table is
copied to the Tary table region with the base address in
TaryTableBase (line 20). The copyTaryTable implementation
is critical to the performance of update transactions. Table
entries can advantageously be updated in parallel; the only
requirement is that each ID update should be atomic. There-
fore, the weak order memory write instruction movnti, which
directly writes data into memory without polluting the cache,
is used to perform fast parallel copying.

Function updBaryTable performs similar updates on the
Bary table with the help of getBaryECN.

Check Transactions

Check transactions run during the execution of indirect
branches. For efficiency, MCFI implements a check transac-
tion as a sequence of machine instructions and instruments an
indirect branch to inline the sequence. The sequence is
slightly different for each kind of indirect branches (i.e.,
returns, indirect jumps, and indirect calls). Further, it needs
adaptation for different CPU architectures. The x86-64
sequence is presented in this section. The implementation on
x86-32 is similar and is omitted for brevity.

Appendix B presents how a check transaction is imple-
mented in assembly for return instructions on x86-64. A
return instruction is translated to a popq/jmpq sequence (lines
2 and 9) to prevent a concurrent attacker from modifying the
return address on the stack after checking. The movl instruc-
tion at line 3 operates on lower four bytes of % rcx and has the
side effect of clearing the upper 32 bits of % rcx. As discussed,
the sandbox is in the region of [0, 4 GB), so the instruction at
line 3 restricts the return address to be within the sandbox.
The instruction at line 5 reads the branch ID from a constant
index in the Bary table. The instruction at line 6 reads the
target ID from the Tary table. As discussed before, the Tary
table starts at % gs.

Based on the values of the branch and target 1Ds, the
following four cases may occur.

Case (1)—If the branch ID in % edi equals the target ID in
% esi, then instructions at lines 7, 8 and 9 are executed,
performing the control transfer. In this case, the target-1D-

US 9,361,102 B2

13

validity check, the version check, and the ECN check are
completed by a single comparison instruction, making this
common case efficient.

Case (2)—If the target address is not four-byte aligned or
its corresponding Tary ID contains all zeros, then the target ID
in % esi is invalid. The branch ID is always valid, so the ID
comparison fails. As a result, instructions at lines 7,8, 11, 12,
and 16 are executed and the program is terminated. In “testb
$1, % sil”, % sil is the lowest byte in % esi and the instruction
tests whether the lowest bit in % sil is 1. If it is not 1, then a
violation of the CFI policy occurred because it uses a return
address that cannot be a possible target.

Case (3)—If the target ID is valid, but the branch 1D in %
edi has a different version from the target ID in % esi, instruc-
tions at lines 7, 8, 11, 12, 13, and 14 are executed, causing a
retry of the transaction. This case happens when an update
transaction is running in parallel. The check transactionhas to
wait for the update transaction to finish updating the relevant
1Ds.

Case (4)—If the target ID is valid, and the versions of the
two IDs are the same, but they have different ECNs, then
instructions at lines 7, 8, 11, 12, 13, 14, and 16 are executed
and the program is terminated. This case violates the CFI
policy.

Indirect calls and jumps can be instrumented similarly with
minor adjustments.

Linearizability

The two ID tables can be viewed as a concurrent data
structure with two operations (check and update operations).
One widely adopted correctness criterion in the literature of
concurrent data structures is linearizability, meaning that a
concurrent history of operations should be equivalent to a
sequential history that preserves the partial order of opera-
tions induced by the concurrent history. The ID tables
described herein are linearizable. In TxUpdate, the lineariza-
tion point is right after the memory barrier at line 5. Before the
linearization point, TxChecks respect the old CFG; after the
point, TxChecks respect the new CFG. In TxCheck, the lin-
earization point is the target ID read instruction at line 6 when
the valid target ID has the same version as the branch ID or the
target 1D is invalid.

The ABA Problem

MCFT’s ID-encoding scheme supports 2** versions and it
might encounter the ABA problem. For example, an attacker
may load over 2'* modules and exhaust the MCFI’s version
number space. This is unlikely in practice, even for just-in-
time compiled code. Security is violated only if the program
has at least 2'* code updates during a check transaction. Ifthis
were a concern, MCFI could maintain a counter of executed
update transactions and make sure it does not hit 2'*. After
completion of an update transaction, if every thread is
observed to finish using old-version IDs (e.g., when each
thread invokes a system call), the counter is reset to zero.
Further, MCFI could use a larger space for version numbers
such as 8-byte IDs on x86-64.

Procedure Linkage Table (PLT)

PLT entries are used for dynamic linking. A PLT entry
contains an indirect jump whose target depends on the runt-
ime adjustable Global Offset Table (GOT). To accommodate
PLT and GOT, MCFI needs to make two adjustments. First,
the GOT entries are dynamically adjusted from the address of
the linker to the addresses of corresponding library functions;
such GOT entry updates are inserted between line 5 and 6 in
Appendix A and serialized by another memory write barrier.
Second, indirect jumps in the PLT may potentially violate the
CFI policy and need to be instrumented with a check trans-
action as well. The complication is that those indirect jump

20

40

45

55

14

targets are in the GOT and dynamically adjusted by an update
transaction. Therefore, the instrumentation for indirect jumps
in the PLT needs to reload the target address from GOT when
a transaction is retried.

Module Linking

In addition to code and data, an MCFI module also contains
auxiliary information for CFG generation. When MCFI mod-
ules are statically or dynamically linked, not only are their
code and data linked, but their auxiliary information is also
merged into the combined module.

There is a range of choices for what kind of auxiliary
information MCFI can attach to a module. The richer the
auxiliary information is, the better it can enable the genera-
tion of a precise CFG. On the other hand, richer auxiliary
information implies more analysis time for generating and
merging the information and for producing a CFG from the
information. There is a tradeoff between the CFG precision
and efficiency because the dynamic linker cannot afford long
analysis time.

MCFTI attaches type information to modules and uses type
matching for fast online CFG generation. Specifically, an
MCFI module comes with the types of its functions and its
function pointers. The benefit of this design is that it can
efficiently generate a relatively precise CFG compared to
coarse-grained CFI. Moreover, the type information for an
individual module can be generated by an augmented com-
pilation toolchain. For this purpose, a modified LLVM is
provided, which propagates types from the source level to low
level. Finally, combining type information of multiple mod-
ules during linking is a simple union operation.
Type-Matching CFG Generation

Next, it is described how MCFI generates a CFG for a
module from its type information. Note that a module may be
the result of linking several smaller modules (e.g., the result
of linking the main module with a DLL module). Another
note is that the current CFG generation embodiment assumes
that the module is produced from C code. CFG generation for
C++ modules would require handling additional control-flow
mechanisms such as exceptions and dynamic dispatch.

The control-flow edges out of non-indirect-branch instruc-
tions can be computed from the code itself; indirect branches
are discussed below. An indirect call through a function
pointer whose type is T is allowed to call any function as long
as (1) the function’s address is taken in the code, and (2) the
function’s type is some T that is structurally equivalent to
typeT. In structural equivalence, named types are replaced by
their definitions. The structural equivalence rule may break
some C code, meaning that the produced CFG may not
include all control-flow edges necessary for the C code to run.
Sufficient conditions for C code not to break are discussed
herein.

Indirect jumps can be classified into two categories: intra-
procedural and interprocedural control transfers. The former
is used by LLVM to compile switch or indirect goto state-
ments. Their targets are organized in read-only jump tables,
which are hard-coded into the program. Such indirect jumps
are statically analyzed to determine their control-flow targets
using information in the jump tables. The interprocedural
indirect jumps implement indirect tail calls. Indirect tail calls
are handled using the same typematching approach; that is, an
interprocedural indirect jump is allowed to jump to any func-
tion whose type is T, assuming the type of the function pointer
used in the indirect jump is T*.

To compute control-flow edges out of return instructions, a
call graph detailing how functions are called by direct or
indirect calls, is constructed. Tail calls are handled in the
following way: if in function f there is a call node calling g,

US 9,361,102 B2

15

and g calls h through a series of tail calls, then an edge from
the call node in f to his added to the call graph. Using the call
graph, control-flow edges out of return instructions can be
computed: if there is an edge from a call node to a function,
then return instructions in the function can return to the return
address following the call node.

There are also unconventional control flows to handle.
First, longjmp mostly returns (through an indirect jump
instruction) to the address set up by a set jmp call. The

16

Violations of Condition C2 requires adding type annota-
tions to assembly code so that the same type-matching
approach can be used.

Applicant believes that for well-behaved C programs that
satisty the conditions, the type-matching approach generates
CFGs that do not break the code. The conditions essentially
enforce a simple type system, ensuring that values of function
pointer types cannot be forged.

Applicant investigated the effort required to revise SPEC-
CPU2006 C programs to comply with the conditions. Appli-

%mpleme?ntatlon described herein connects .the longjmp’s 10 cant implemented an analyzer on top of the StaticChecker
indirect jump to the return address of each setjmp. Second, C >
1 iabl ¢ functi Ifa functi it framework of Clang, LLVM’s front end. The analyzer over-
a *O\KS varia .ei)alrgumen ne lﬁng ? netion po(lin er ngg approximates violations of the two conditions. Violations of
T allows varlable arguments, the mp ementation €SCribe Condition C1 are caught easily because the LLVM’s internal
herein allows itto invoke any function whose address is taken, representation makes all type casts explicit. For Condition
whose return type matches, and whose parameter types match 15 2, the analyzer just reports cases of inlined assemblies.
the fixed parameter types in t. For instance, suppose the The analyzer found no violation of C2 in the twelve bench-
function pointer has type “int (*) (int, . . .)”. An indirect call marks. (However, the libc library used includes inlined
through the pointer can invoke any function whose address is assemblies and Applicant manually provided type annota-
taken, whose return type is int, and whose first parameter type tions for them.) All violations found by the analyzer are in
is int. Third, signal handlers do not return to the application’s 20 related to Condition C1 and summarized in Table 1. For a
code; instead, it returns to a small code snippet that invokes benchmark, column SLOC lists its lines of source code and
the sigreturn system call. In the implementation described column VBE (Violation Before false-positive Elimination)
herein, the code snippet is inlined into signal handlers and lists the number of C1 violations. While some benchmarks
thus the return is eliminated. Fourth, inlined assembly code is such as gobmk have no violations, two benchmarks, per-
sometimes used in C code. For instance, the libc library uses 25 lbench and gee, have thousands of violations. Many cases do
inlined assemblies to implement CPU-specific versions of not lead to actual violations of the CFG built by embodiments
memcpy. For such inlined assembly code, embodiments of of the invention; that is, they are false positives.
TABLE 1
C1 violations in SPECCPU2006 benchmark:
SPECCPU2006 SLOC ~ VBE UC DC MF SU NF VAE
Perlbench 126,345 2878 510 957 234 633 318 226
bzip2 5,731 27 0 0 6 4 0 17
Gee 235,884 822 0 0 15 737 27 43
Mef 1,574 0 0 0 0 0 0 0
Gobmk 157,669 0 0 0 0 0 0 0
Hmmer 20,658 20 0 0 20 0 0 0
Sjeng 10,544 0 0 0 0 0 0 0
Libquantum 2,606 1 0 0 0 0 0 1
h264ref 36,098 8 0 0 0 0 0 0
Mile 9,575 8 0 0 0 0 0 0
Lbm 904 0 0 0 0 0 0 0
Sphinx 13,128 12 0 0 11 1 0 0
the system requires developers to add type annotation for 4 Some of the false positives have common patterns and can
function pointers and functions used in the assembly. be easily ruled out by the analyzer. Several patterns are dis-
Conditions for Type-Matching CFG Generation cussed below.))
. . . . The first pattern is upcasting (UC). C developers some-
Embodiments of the invention assume the input C program .
. . 2. 5o times use type casts between structs to emulate features such
has been preprocessed to satisfy the following conditions - . . .
) o as parametric polymorphism and inheritance. An abstract
before CFG generation. Condition C1 assumes no type cast- - . . .
. . . . struct type is defined and it contains common fields for its
ing to or from function pointer types. Condition C2 assumes b Th f te struct hvsical sub
that the program does not contain assembly code sublypes. Then a few concrete s e types are physical sub-
progr Y ’ types of the abstract struct type (in the sense that they share
Condition C1 disallows explicit or implicit type casts from 55 the same prefix of fields). A function can be made polymor-
or to function pointer types. For instance, embodiments of the phic by accepting values of the abstract struct type. Callers of
invention do not allow casting a function pointer of type “void the function have to perform type casts. Those type casts are
(*) (int)” to type “void (*) (char *)” and make an indirect call upcasts, which are false positives in embodiments of the
through the resulting pointer. Condition C1 implies that only invention because the extra fields in a concrete struct cannot
those functions whose addresses are taken can be indirectcall 60 be accessed after the cast.
targets. Condition C1 includes implicit type casts involving The second pattern is safe down-casting (DC). Downcasts
function pointers, for example, when a union type includes a from an abstract struct type to a concrete struct type are in
function pointer field or when a struct is cast to another struct general not safe. However, a common pattern is to have a type
that includes a function pointer field whose type is incompat- tag field in the abstract struct. The runtime type tag encodes
ible with the one in the first struct. However, Condition C1 65 the type of a concrete struct when it is cast to the abstract

does not include all type casts; only casts involving function
pointer types are included.

struct. Clearly, if all casts involving the abstract struct type
respect a fixed association between tag values and concrete

US 9,361,102 B2

17

struct types, then those casts can be considered false posi-
tives. Such association can be specified manually (or inferred
from source code) and fed to the analyzer.

The third pattern concerns the malloc and free functions
(MF). The malloc function always returns void*. If it is
invoked to allocate a struct that contains function pointers,
Condition C1 is violated as it involves a type cast from void*
to a struct with function pointers inside. Such violations are
considered false positives because if the function pointers
inside the struct are used without proper initialization, the C
program is not well behaved as it exhibits undefined behavior.
Similarly, type casts in invocations of free are also considered
false positives.

The fourth pattern concerns safe updates (SU). Updating
function pointers with literals are considered false positives.
For instance, function pointers may be initialized to be
NULL, which involves a cast from integers to function point-
ers. This is a false positive as dereferencing a null value would
crash the program.

The fifth pattern concerns non-function-pointer access
(NF). There are some type casts that involve function point-
ers, but do not use the function pointers after casts. For
example, perlbench contains the example

if (XPVLV*)(sv->sv_any))->xlv_targlen) { . ..}

Struct XPVLV has a function-pointer field, but after the cast
only non-function-pointer fields are used. Itis a false positive.

In Table 1, columns “UC”, “DC”, “MF”, “SU” and “NF”
list the numbers of false positives removed by the aforemen-
tioned elimination methods. Column “VAE” presents the
number of cases after elimination. As can be seen from the
table, the elimination methods are effective at eliminating a
large number of false positives. After the process, seven
benchmarks report no violations and need no code fixes. For
the other five benchmarks, the remaining cases can be put
categorized as Kind K1 in which a function pointer is initial-
ized with the address of a function whose type is incompatible
with the function pointer’s type or Kind K2 in which a func-
tion pointer is cast to another type and cast back to its original
type at a later point.

Table 2 reports the number of K1 and K2 cases in the
remaining five benchmarks. Row K1-fixed lists the number of
cases in K1 that require changes to the source code to generate
a working CFG using the type-matching method. None of the
cases in K2 required us to change the source code.

TABLE 2

Number of cases for the two kinds of violations

perlbench bzip2 gee libquantum milc

K1 4 0 36 1 0
K1-fixed 4 0 22 1 0
K2 222 17 7 0 5

Most K1 cases required manual edits to the source code
because the unmatched types of function pointers and func-
tions may cause missing edges in the generated CFG. Con-
sider a case in the gcc benchmark that is related to a generic
splay tree implementation. Each node in the splay tree has a
key typed unsigned long. There is a key-comparison function
pointer typed int (*) (unsigned long, unsigned long). In two
places, the function pointer is set to be the address of stremp,
whose type is int (*) (const char*, const char*). The CFG
generation does not connect the function pointer to strcmp
because the function pointer’s type is incompatible with strc-
mp’s type. To fix the problem, a strcmp wrapper function that
has the equivalent type as the type of the comparison function

40

45

50

55

18

and makes a direct call to strcmp was added. The key-com-
parison function pointer is then set to be the address of the
wrapper function. All cases in the “K1-fixed” row can be fixed
by wrappers or by directly changing the types of function
pointers or functions. All K1 cases were fixed cases with 6
lines of code changes for perlbench, about 30 lines for gce,
and 1 line for libquantum. There are 14 K1 cases in gcc that
did not require code patches because the involved function
pointers are never used (i.e., they are dead code) even though
they are initialized with functions of incompatible types.

Four benchmarks report K2 cases. Consider an example in
the perlbench program. A function pointer is initially stored in
a void* pointer and later the void* pointer is cast back to the
original function pointer’s type and dereferenced. In per-
Ibench and gcec, there are also cases of downcast without
performing dynamic checking on type tags. In these cases,
developers decided those downcasts are safe (perhaps
through code inspection) to avoid dynamic checks. None of
the K2 cases required code changes to generate a working
CFG. This was confirmed by running instrumented bench-
marks successfully with the provided data sets.

This review using the SPECCPU2006 benchmark shows
that the task of making source code comply with the type-
matching approach is not onerous and can be achieved with
zero or small changes to the code. Furthermore, the empirical
investigation suggests that only K1 cases need to be
addressed.

Static and Dynamic Linking

In embodiments of the invention, separately compiled and
instrumented modules can be statically linked together.
MCFT’s static linker changes the standard static linker with
the phase of combing modules’ auxiliary information. It also
modifies the standard linker’s PLT entry templates to emit
MCFI-instrumented PLT entries in lieu of the original unsafe
ones. MCFI also allows a multithreaded program to load new
libraries dynamically and transfer the control to the libraries’
code. The dynamic linking is jointly performed by MCFI’s
dynamic linker, CFG generator, and runtime. The dynamic
linker itself is instrumented by MCFI and runs within the
sandbox, same as other program modules. Before any pro-
gram module is loaded, the dynamic linker is first loaded in
memory. The program modules’ GOT entries are set to the
dynamic linker’s entry point. In detail, dynamically linking a
library is performed in the following steps.

First, a running program invokes the MCFI’s dynamic
linker (by jumping to a PLT entry or invoking di open) to load
a new library. The dynamic linker loads the library in the
sandbox and sets the library code to be writable but not
executable. Then, the linker analyzes the library and gener-
ates new PLT target addresses.

Second, the linker invokes the CFG generator to generate a
new CFG for the original program with the new library. PLT
entries are connected to functions with matching names. New
IDs are generated for the Bary and Tary tables. Further, the
runtime patches the in-sandbox library so that the library’s
code has the Bary table indexes embedded in instructions that
read branch IDs. Next, the code pages are set to read-only and
statically verified to obey the CFI policy (the verifier will be
discussed in the “MFCTI’s Toolchain” section). Then, the code
pages of the library are set to be executable, but not writable.

Third, the linker passes the new PLT target addresses to the
runtime and executes an update transaction, adjusting the IDs
in the tables as well as modifying entries in the GOT to use the
new PLT target addresses.

MCFT’s Toolchain

Applicant implemented an MCFI toolchain on x86-32/64

Linux. The toolchain includes a rewriter that performs pro-

US 9,361,102 B2

19

gram instrumentation, a static linker that combines modules
and emits instrumented PLT entries, a CFG generator that
collects auxiliary module information and constructs CFGs, a
verifier that checks whether an MCFI module is instrumented
to respect its CFG, a runtime system that loads and executes
instrumented programs, and a dynamic linker that is invoked
by the runtime to load libraries dynamically.

MCEFT’s rewriter (4000 lines of C++ code) is implemented
inside the LLVM compilation framework (version 3.3). Three
passes are inserted into LLVM’s backend to reserve scratch
registers used in TxCheck transactions, dump type informa-
tion, and perform instrumentation. These three passes operate
on LIVM’s machine-dependent representation and execute
after LLVM IR-level passes. The augmented LIVM frame-
work is used to generate instrumented x86 machine code and
auxiliary type information.

MCFT’s CFG generator is a 500-line C++ program, imple-
menting the CFG generation process described in the “Mod-
ule Linking” section herein. The CFG generator takes a mod-
ule’s auxiliary type information and generates Bary and Tary
tables. The type-based approach enables fast construction of
those tables. For example, the CFG generator generates Bary
and Tary tables in about 150 milliseconds for gce, whose code
size is about 2.7 MB.

Applicant also implemented an independent verifier (4000
lines of C++ code on top of the LLVM instruction decoder)
that performs modular verification of MCFI modules. The
verifier takes an MCFI module, disassembles the module, and
checks whether indirect branches are instrumented as
required. Memory writes remain in the sandbox (so that the
tables are protected) and no-ops are inserted to make indirect-
branch targets aligned. The auxiliary type information in an
MCFI module enables the complete disassembly of the mod-
ule because it tells all possible targets of indirect branches (as
described in the CFG generation process). The verifier
removes the rewriter outside of the trusted computing base.

MCFT’s runtime system loads and runs MCFI modules.
The runtime is based on the MIP runtime described in Niu &
Tan with 200 lines changed. The runtime invokes the CFG
generator to generate tables in memory. The runtime does not
allow modules to directly invoke native system calls. Instead,
it wraps system calls as API functions and checks their argu-
ments.

For instance, when mmap is invoked, the runtime checks
the newly mapped memory cannot be both writable and
executable. A similar restriction is placed on the mprotect
system call.

From a developer’s perspective, it is cumbersome to port
applications to run in MCFI’s runtime, because the runtime
only provides syscall-like APIs. Therefore, embodiments of
the invention ported a standard C library called MUSL (avail-
able at http://www.musl.org; MUSL libc is a standard C
library implementation) by changing its system-call invoca-
tions to MCFI runtime API invocations. The MUSL libc,
which is also created as a module using the MCFI framework,
is instrumented in the same way as other program modules.
MUSL has about 64K lines of C code. Applicant’s analysis
tool reports 45 C1 violations, in which 5 violations are K1 and
the other 40 violations are K2. All 5 K1 violations break the
code and need to be fixed by the same approach of function
wrappers or type adjustments, as discussed before.

MCFT’s static linker is modified from Linux’s standard
linker (1d). MCFI’s dynamic linker, modified from MUSL’s
linker, loads libraries at runtime as discussed herein.
Evaluation

Using its toolchain, Applicant evaluated MCFTI on its per-
formance overhead, the CFG generation process, and secu-

20

40

45

65

20

rity. The evaluation was performed on SPECCPU2006 C
benchmarks (with slight modifications as discussed before),
including nine integer benchmarks and three floating-point
benchmarks. All benchmarks were compiled at optimization
level three. The experiments were conducted on a system with
the x86-64 UBUNTU® 13.10 operating system, an INTEL
CORE® 17-3770 CPU at 3.8 GHz, and 8 GB physical
memory.

Overhead

MCYFI slows down a program’s execution. The slowdown
is caused by two factors. First, since the program is statically
instrumented, the extra checks and no-ops (for alignment)
inserted in the program increase its execution time. Second,
when the program dynamically loads a library, MCFI’s runt-
ime generates a new CFG and updates the ID tables using an
update transaction. During an update transaction, check
transactions running in parallel cannot finish until the relevant
IDs are updated to the new version. Both the CFG generation
process and the delay on check transactions increase the
execution time.

Execution Overhead Due to Code Instrumentation

Applicant measured how much execution time overhead
MCFTI imposes on benchmarks due to code instrumentation.
All benchmarks were instrumented and tested on reference
data sets three times with a maximum variance of 1.5%. FI1G.
7 presents the percentage of execution time increase for the
benchmark programs. In this experiment, libraries are stati-
cally linked. Therefore, ID tables are not updated during
program execution. Consequently, check transactions are not
running in parallel with update transactions.

The table shows that the average overhead is around 4-6%
on x86-32 and x86-64. It includes the overhead of executing
check transactions and sandboxing memory writes. The over-
head is comparable to other CFI systems that report about
5.9% overhead on x86-32 and 8.0% on x86-64 without sup-
porting separate compilation is supported and coarse-grained
CFI systems such as CCFIR, binCFI, NaCl, and MIP that
impose about 5% overhead, but do not support fine-grained
CFGs.

The low overhead of MCFT’s instrumentation seems sur-
prising considering that a check transaction has two memory
reads for reading branch and target IDs. However, the two
reads are executed in parallel by the CPU because there is no
mutual dependency as confirmed by the micro-benchmarks
described herein.

Execution Overhead Due to Code Updates

As mentioned, in the previous experiment, there is no par-
allel check and update transactions. It is rather difficult to
design experiments with parallel check and update transac-
tions for SPECCPU2006 benchmark programs because they
load DLLs at the beginning of execution and do not use
dlopen to load libraries. Programs exist that dynamically load
libraries in the middle of execution using dlopen. For
example, a JAVA® Virtual Machine (JVM) dynamically
loads and unloads libraries according to what JAVA® classes
are running. However, Applicant believes the performance
overhead imposed on those systems would be similar to FIG.
3 because library loading is a rare event. A rather extreme test
for whether MCFT’s transactions scale in a parallel environ-
ment is in a Just-In-Time (JIT) compilation environment,
where code is generated and installed on-the-fly, and as a
result, ID tables need to be updated frequently.

Applicant designed a simulation experiment to test how
MCFT’s transactions scale. Specifically, Applicant added a
separate ID-table update thread when running SPEC-
CPU2006 benchmarks. The thread simulates frequent ID-
table updates. At a fixed interval, it performs an update trans-

US 9,361,102 B2

21

action that updates the version numbers of all IDs in the ID
tables (but preserving the ECNs). As a result, parallel check
transactions are delayed. To determine the frequency of
update transactions, Applicant measured how frequently new
code is installed in the GOOGLE® V8 JavaScript JIT execu-
tion engine. Based on that data, Applicant set the frequency to
be 50 Hz. FIG. 8 presents the percentage of execution-time
increase for the benchmarks. The average overhead is 6-7%,
which demonstrates MCFI’s transactions scale well with fre-
quent code updates.
Space Overhead

On average, MCFl increases the static code size by 17% on
the benchmarks. During runtime it also requires extra
memory as large as the code region to store the Bary and Tary
tables. However, memory footprint increase is negligible
because the majority of'a program’s runtime memory is occu-
pied by its runtime data in the heap, which is much larger than
the code region.
Evaluating MCFI’s Transaction Algorithm

MCEFTI uses its custom transaction implementation. Using
micro-benchmarks, Applicant compared MCFI’s transaction
algorithm with other possibilities. Table 3 shows the micro-
benchmark result of normalized execution time of check
transactions implemented by TML and described in
Dalessandro, Readers-Writer-Lock (RWL) (http://www.cs-
.rochester.edu/research/synchronization/pseudocode/
rw.html), or a mutex implemented by atomic Compare-And-
Swap. TML, the most performant STM under read-
dominated workload, doubles the execution time of MCFI,
because it needs to read the global sequence lock before and
after ID reads. RWL and Mutex, which use expensive LOCK-
prefixed instructions, are much slower than MCFI’s transac-
tions.

TABLE 3
MCFI TML RWL Mutex
Normalized Exec Time 1 2 29 22

CFG Generation

Applicant measured the precision of the CFGs generated
by MCFI. Table 4 lists the relevant statistics of benchmarks
when they are statically linked with libc. For a benchmark, the
“IBs” column lists the number of instrumented indirect
branches. The number of indirect branches is also the upper
bound of possible equivalence classes of addresses in a CFG
because an indirect branch is allowed to target all addresses in
an equivalence class. The “IBTs” column lists the number of
possible indirect branch targets (i.c., functions whose
addresses are taken and addresses following a call instruc-
tion). The “EQCs” column lists the number of equivalence
classes of addresses in the benchmark’s generated CFG using
the typematching approach. On x86-64, fewer equivalence
classes are generated, mainly because more tail calls are
replaced with jumps by LLVM’s tail call optimization.

TABLE 4
CFG statistics for SPECCPU2006 benchmark
x-86-32 x-86-32
SPEC 2006 IBs IBTs EQCs IBs IBTs EQCs
perlbench 2250 15492 930 2081 15273 737
bzip2 220 515 110 217 544 93
gee 5215 48634 2779 4796 46943 1991

10

15

20

25

30

35

40

45

50

55

60

22
TABLE 4-continued

CFG statistics for SPECCPU2006 benchmark:

X-86-32 X-86-32
SPEC 2006 IBs IBTs EQCs IBs IBTs EQCs
mef 170 468 119 174 445 106
gobmk 2734 11073 709 2487 10667 579
hmmer 726 4464 401 715 4369 353
sjeng 305 1457 207 337 1435 184
libquantum 246 754 161 258 702 121
h264ref 1099 3677 493 1096 3604 432
milc 441 2443 312 432 2356 264
[bm 161 455 112 161 426 96
sphinx3 585 2963 380 598 2895 321

Compared to coarse-grained CFI techniques with several
equivalence classes supported, MCFI’s CFGs can generate
two to three orders of magnitude more equivalence classes.
For instance, CCFIR and binCFI allow an indirect call to
target any function whose address is taken; therefore all such
functions are included in one equivalence class. CCFIR and
binCFI also allow any return instruction to target any instruc-
tion following a call, combining all return sites in one equiva-
lence class. The classic CFI’s instrumentation described in
Abadi can support a fine-grained CFG, but for implementa-
tion convenience, its CFG generation also allows all indirect
calls to target any function whose address is taken. NaCl and
MIP enforce chunk-based CFI in which an indirect branch
can target any chunk beginning; it enforces even less-precise
CFGs.

Security

In an MCFI-hardened program, an indirect call targets only
typematched function entries and a return can jump to those
return sites according to the generated call graph. Therefore,
return-into-libc attacks are mitigated because attackers can-
not redirect returns and function calls to arbitrary functions.
In addition, since MCFI guarantees that only instructions
appearing in the CFG are executed, a ROP (return-oriented
programming) gadget starting in the middle of an instruction
is eliminated. Applicant measured gadget elimination by
counting unique gadgets in the original benchmarks and
MCFI-hardened ones using a ROP-gadget finding tool called
rp++ (https://github.com/OverclOk/rp). On average, MCFI
can eliminate 96.93%/95.75% of ROP gadgets on x86-32/64.

To compare with other CFI techniques, Applicant also
calculated the Average Indirect-target Reduction (AIR) met-
ric described in M. Zhang & R. Sekar, “Control flow integrity
for COTS binaries” in 22nrd Usenix Security Symposium 337-
52 (2013) for the twelve SPECCPU2006 benchmarks. Intu-
itively, the AIR metric, which is a real number in [0, 1),
measures how many indirect-branch targets are reduced on
average by a CFI technique. A program without any CFI
protection has an AIR value of 0 as an indirect branch can
jump to any code address in the program. A CFI protection
restricts indirect branches to a subset of code addresses. The
more restriction a CFI technique places on indirect branches,
the closer the AIR metric gets to 1. The AIR values of different
CFI approaches are summarized in Table 5.

TABLE 5
MCFI (32) MCFI (64) Classic CFI binCFI NaCl
AIR (%) 99.99 99.97 99.16 9891 96.15

The AIR values of MCFI on both x86-32 and x86-64 are
computed while other values are derived from the data

US 9,361,102 B2

23
reported in Zhang & Sekar. Since CCFIR and MIP are
capable of enforcing the same protection as binCFI, but
weaker than the classic CFI, their AIR values should be
between binCFI and the classic CFI. In comparison, MCFI
produces the best AIR values.

AIR values aside, there are more evidence that suggests
fine-grained CFI provides better protection than coarse-
grained CFI. First, ROP attacks can still be launched for
systems hardened with coarse-grained CFI. Second, some
attacks hijack a function pointer and use that function pointer
to jump to a dangerous library function such as execve. These
kind of attacks may still be possible under coarse-grained
CF1, but not fine-grained CFI. For instance, under coarse-
grained CFI, the vulnerability, CVE-2006-6235, of GnuPG
allows a remote attacker to control a function pointer and
jump to execve, whose address is taken when GnuPG is
linked with the MUSL libe. If protected by MCFI, the func-
tion pointer cannot be used to jump to execve because their
types do not match.

Application to Just-In-Time Systems

Programming languages with managed runtime systems
are becoming increasingly popular during the last two
decades. Such languages include JavaScript, Java, C#,
Python, PHP, and Lua. The use of managed languages is in
general beneficial to software security. Managed environ-
ments provide a natural place to deploy a range of security
mechanisms to constrain untrusted code execution. For
instance, Java and .NET virtual machines implement security
sandboxes and bytecode verification. As another example, a
JavaScript engine enforces dynamic typing, making execu-
tion of JavaScript much more secure than native-code-based
ActiveX.

For performance, modern managed language implementa-
tions adopt Just-In-Time (JIT) compilation. Instead of per-
forming pure interpretation, a JIT compiler dynamically
compiles programs into native code and performs optimiza-
tion on the fly based on information collected through runt-
ime profiling. JIT compilation in managed languages is the
key to high performance, which is often the only metric when
comparing JIT engines, as seen in the case of JavaScript.
Hereafter, the terms “JITted code” refers to native code that is
dynamically generated by a JIT compiler and “code heap”
refers to memory pages that hold JITted code.

In terms of security, JIT brings its own set of challenges.
First, a JIT compiler is large and usually written in C/C++,
which lacks memory safety. It contains sophisticated compo-
nents such as a parser that parses untrusted input programs, an
optimizing compiler that generates optimized native code,
and a garbage collector. There are always security-critical
bugs in such a large and complicated C/C++ code base. For
instance, several buffer-overflow vulnerabilities have been
found in the GOOGLE® V8 JavaScript engine.

Second, the code heap used in JIT compilation is often
made both writable and executable to facilitate online code
modification, which is used in crucial optimization tech-
niques such as inline caching and on-stack replacement. Con-
sequently, Data Execution Prevention (DEP) cannot be
applied to memory pages of the code heap. By exploiting a
bug such as a heap overflow, an attacker can inject and execute
new code in those pages.

Finally, even without code injection, a class of attacks
called JIT spraying enables an attacker to craft input pro-
grams with special embedded constants, influence a JIT com-
piler to generate native code with those constants embedded,
and hijack the control flow to execute those constants as
malicious code.

10

15

20

25

30

35

40

45

50

55

60

65

24

Existing techniques to secure JIT code suffer from two
main drawbacks. First, existing systems provide only loose
security. NaCl-JIT enforces coarse-grained control-flow
integrity, which cannot prevent advanced Return-Oriented
Programming (ROP) attacks. Software diversification tech-
niques improve security in a probabilistic sense; however, a
lucky or determined attacker might be able to defeat such
schemes. Second, some systems impose a large performance
overhead. For instance, NaCl-JIT imposes around 51% over-
head on the V8 JavaScript x86-64 engine.

Embodiments of the invention provide an approach
entitled RockJIT for securing JIT compilation. The premise is
to enforce fine-grained Control-Flow Integrity (CFI), in
which a high-precision Control-Flow Graph (CFG) is stati-
cally extracted from the source code of a JIT compiler and
enforced during runtime. As discussed herein, fine-grained
CF1 is stronger and is an effective defense against control-
flow hijacking attacks, including code injection, return-to-
libc, and ROP attacks.

Enforcing fine-grained CFI on a JIT compiler is not
enough, however, because it dynamically generates new
code, whose CFG also needs to be considered. RockJIT is
built upon Modular Control-Flow Integrity as discussed
herein. In MCFI, a program is divided into multiple modules,
each of which carries its own CFG. When modules are linked
dynamically, individual CFGs are combined to form the CFG
of the combined module. During runtime, CFGs are repre-
sented as tables, which are accessed and updated through
lightweight software transactional memory. The support for
modularity is necessary for a JIT environment because each
piece of newly generated code is essentially a new module,
whose CFG needs to be combined with the CFG of existing
code.

MCFI was designed to support dynamic linking of librar-
ies. Dynamic linking happens infrequently during program
execution. A JIT compiler, however, generates and updates
code frequently. For instance, the V8 JavaScript engine
installs new code about 50 times per second. Additionally,
most JIT compilers have a large body of C++ code. The C++
language contains advanced control flow features such as
exceptions and virtual methods, which complicate the pro-
cess of CFG generation.

RockIIT addresses the aforementioned challenges and is a
general JIT compilation hardening approach.

Embodiments of the invention harden both the JIT com-
piler and JITted code, but by enforcing different levels of
CFG precision on the JIT compiler and JITted code, its over-
head is much smaller than previous work and its security is
stronger. Evaluation on the V8 engine shows that RockJIT-
hardened V8 can remove over 99.97% functionality-irrel-
evant indirect branch edges from NaCl-JIT-hardened V8, and
is only 14.6% slower than the vanilla V8.

Embodiments of the invention also provide a method for
generating high-precision CFGs for C++ programs. Exten-
sive experience on over one million lines of code demon-
strates that the methods described herein are practical: C++
programs can be made compatible with the methods with a
small amount of changes to source code.

Evaluation on the V8 engine shows that the methods
described herein for JIT protection requires only minimal
changes to a JIT compiler. Applicant changed only around
800 lines of source code, about 0.14% of V8’s code base.
Applicant believes that the methods described herein can be
easily adopted to other JIT compilers.

Rock]IT Overview

This section discusses RockJIT’s threat model, its main

defense mechanisms, and its security strength.

US 9,361,102 B2

25
Threat Model

RockJIT’s threat model is the same as the strong model in
Abadi’s original CFI work. An attacker is modeled as a con-
current user-level thread, running in parallel with other
threads in the JIT compiler. The attacker thread can read and
write any memory, subject to memory page protection. There-
fore, in this model, any writable memory can change because
of'the attacker thread between any two instructions in the user
program. CPU registers of a thread are assumed not writable
directly by the attacker thread. However, the attacker can
indirectly affect registers of other threads by corrupting
memory. For example, if one JIT-compiler thread loads from
writable memory to a register, then the register’s value is
controlled by the attacker because the attacker controls the
writable memory.

It is further assumed that the JIT compiler’s code is benign,
but may contain vulnerabilities. The JITted code can contain
malicious logic because it is compiled from source code that
might be provided by the attacker. The malicious logic aims to
launch attacks such as code injection and JIT spraying
attacks.

Two further assumptions are made about the JIT compiler.
First, assume context switches between the JIT compiler and
JITted code are through a set of interfaces; that is, only
through one of those JEntries and CEntries in FIG. 9 can the
control transfer between the JIT compiler and JITted code.
This assumption enables different CFG precision on the JIT
compiler and JITted code. Second, assume JITted code, when
executed normally (i.e., no jumps to the middle of instruc-
tions), does not contain direct system-call invocations and
privileged instructions. The JITted code can, however, invoke
one of the CEntries to request services such as OS system
calls from the JIT compiler (after appropriate security check-
ing by the compiler). These two assumptions are true in all the
JIT compilers Applicant inspected. Even if a certain JIT com-
piler violates these assumptions, it should be easy to modify
it to make the assumptions hold.

Defenses in RockJIT

RockJIT’s architecture is visualized in FIG. 10. It provides
services to a JIT compiler and monitors its security. An exist-
ing JIT compiler such as V8 is modified slightly to cooperate
with Rock-JIT. It is then compiled and instrumented by Rock-
JIT’s compilation toolchain to generate an MCFI module.
The module is loaded by RockJIT into a sandbox. After
loading, RockJIT generates a control-flow graph for the JIT
compiler based on the auxiliary type information in the mod-
ule, constructs MCFI tables that encode the control-flow
graph, and starts execution of the JIT compiler.

The sandbox around the JIT compiler and JITted code
restricts their control flow according to the tables and also
restricts their memory access to be inside the sandbox. The
JIT compiler can request services provided by RockJIT via a
set of well-defined interface functions. For example, to pre-
vent code in the sandbox from changing memory protection
arbitrarily, all direct system calls for changing memory map-
ping and memory pages’ protection bits are forbidden;
instead, the code can invoke services provided by RockJIT to
issue such system calls in a managed way.

To rule out code injection attacks, RockJIT guarantees that
no memory pages are writable and executable at the same
time, similar to Data Execution Protection (DEP). One chal-
lenge is that the code heap (i.e., memory pages that hold
JITted code) is made both writable and executable in typical
JIT compilers.

To address this issue, RockJIT uses a shadow code heap. It
takes advantage of the virtual memory mechanism available
to user-space programs. The shadow code heap is outside of

15

30

35

40

45

55

26

the JIT compiler’s sandbox and in Rock-JIT’s private
memory. It is mapped to the same physical pages as the code
heap in the sandbox but with different permissions. This can
be achieved by shared memory mechanisms provided by
OSes (e.g., shm_open, ftruncate, and mmap libc calls on
Linux). In particular, the code heap in the sandbox is made
readable and executable, but not writable. The shadow code
heap is made readable and writable, but not executable.
(Since the shadow code heap is controlled by trusted RockJIT,
whether it is executable or not does not affect security.
Embodiments of the invention make it not executable, fol-
lowing the principle of least privilege.) Because memory
access of the JIT compiler is restricted to be inside the sand-
box, the JIT compiler cannot directly modify the shadow code
heap for runtime code manipulation. Instead, it invokes ser-
vices of RockJIT to install new native code or modify existing
native code. RockJIT performs verification on the native code
to check a set of properties (discussed in the “Securing JITted
Code” section herein) for security. If the verification suc-
ceeds, RockJIT installs the new code in the shadow code heap
and updates MCF] tables using a new control-flow graph that
takes the new code into account. Since the shadow code heap
maps to the same physical pages as the in-sandbox code heap,
the code heap is filled with the same code, which can then be
invoked by the JIT compiler.

RockIIT enforces control-flow integrity on both the JIT
compiler and JITted code, but applies different levels of pre-
cision on those two parts. For the JIT compiler, RockJIT
applies a C++ CFG generation strategy detailed in the “C++
CFG Generation” section herein to produce a relatively fine-
grained CFG offline; it takes into consideration C++ seman-
tics such as virtual method calls. In contrast, the CFG for
JITted code is coarse-grained in the sense that all its indirect
branches share a common set of targets. The JIT compiler is
modified to emit not only native code, but also information
about indirect-branch targets. The verifier then deduces the
coarse-grained CFG for the new code and combines it with
the old CFG.

The approach of hybrid CFI precision in RockJIT is the
result of a careful consideration of both security and perfor-
mance. First, the JIT compiler’s code is mostly where the
majority of the code is and contains dangerous system call
invocations. Because its code is statically available, con-
structing a fine-grained CFG offline for the JIT compiler
increases security substantially as recent work has shown that
coarse-grained CFI can still be attacked by ROP attacks. On
the other hand, JITted code is frequently generated on the fly
and for performance it is important that verification and new
CFG generation do not have high performance overhead.
Verification and CFG-generation algorithms for coarse-
grained CFI run much faster. Applicant believes that coarse-
grained CFI for JITted code will not jeopardize security
because one of the assumption that JITted code cannot con-
tain dangerous instructions such as system calls, a property
that is enforced by RocklJIT’s verifier; such instructions are
required in an attack. JITted code can still request system-call
services from the JIT compiler, but the JIT compiler is hard-
ened through fine-grained CFI. Security is maintained as long
as sufficient checks are placed before system calls for the set
of control-flow paths in a fine-grained CFG, which is a much
smaller set than the one in a coarse-grained CFG.

Security Benefits

Despite the threats described in the threat model, Rock-
JIT’s defense provides the following security benefits.

First, JIT spraying attacks are prevented. JIT spraying
attacks inject malicious instruction sequences in seemingly
benign JITted code and jump to the malicious code by hijack-

US 9,361,102 B2

27

ing the control-flow. RockJIT enforces control-flow integrity
and it is not possible to execute instructions that are not in the
original JITted code. Therefore, JIT spraying attacks are pre-
vented.

Second, the execution of the JIT compiler respects a fine-
grained CFG and there are no known ROP attacks that can
attack a system with fine-grained CFI. Furthermore, no
memory pages in the JIT compiler and JITted code are both
writable and executable, preventing code injection attacks.
Thanks to the verifier, the JIT compiler is not in the TCB even
though it performs runtime code manipulation. The native
code generated by the JIT compiler is first checked to obey a
set of safety properties before installed. The verifier is in the
TCB but it is much smaller than the JIT compiler.

Securing Jitted Code

The code heap maintained by a JIT compiler is where code
is dynamically managed. It consists of multiple code regions.
A JIT compiler dynamically installs, deletes, and modifies
code regions. New code regions are frequently generated by
the compiler and installed in the code heap. When a code
region is no longer needed, the JIT compiler can delete it from
the code heap and reuse its memory for future code installa-
tion. Runtime code modification is mostly used in perfor-
mance-critical optimizations. As an example, inline caching
is a technique that is used in JIT compilers to speed up access
to object properties. In this technique, a JIT compiler modi-
fies native code to embed an object property such as a member
offset after the property has been accessed for the first time,
avoiding expensive object-property access operations in the
future. Another example of runtime code modification occurs
in V8 during code optimization. V8 profiles function and loop
execution to identify hot functions and loops. It performs
optimization on the hot code to generate an optimized ver-
sion. Afterwards, runtime code patching is performed on the
unoptimized code to transfer its control to the optimized
version through a process called on-stack replacement.

Because RockJIT enforces CFI, it is necessary to check
security for each step of runtime code installation, deletion,
and modification. The “Verification” section herein discusses
how verification is performed when a new piece of code is
installed. The process for code deletion and modification has
only small differences, which are discussed in the “JITted
Code Installation, Deletion, and Modification” section. The
“Modification to a JIT Compiler” section discusses how to
modify a JIT compiler to cooperate with RockJIT for secure
native code execution using V8 as an example.

Verification

The verifier maintains three sets of addresses that are code
addresses in the code heap: pseudo-instruction start addresses
(PSA), indirect branch targets (IBT), and direct branch targets
(DBT).

The pseudo-instruction start addresses (PSA) address set
remembers the start addresses of all pseudo-instructions. A
“pseudo-instruction” is defined as: (1) a checked indirect
branch, which is MCFI’s table-based instruction sequence for
checking a register r immediately followed by an indirect
branch through r; or (2) a masked memory write, which is
MCFI’s mask on a register r immediately followed by a
memory write through r; or (3) an instruction that is neither an
indirect branch nor an indirect memory write.

The indirect branch targets (IBT) address set remembers all
possible indirect branch targets. All such targets are four-byte
aligned.

The direct branch targets (DBT) address set remembers all
direct branch targets.

The critical invariant of the three sets is IBT U DBT <
PSA. That is, all indirect and direct branch targets must be

10

15

20

25

30

35

40

45

50

55

60

65

28

start addresses of pseudo-instructions. With this invariant, it is
impossible to jump to the middle of an instruction, which is
necessary for JIT spraying attacks. Furthermore, it is impos-
sible to transfer the control to an indirect branch or a memory
write without executing its preceded MCFI check, which is
necessary for CFI and SF1.

The three address sets are built incrementally with the
installation of new code. Initially, they are all empty sets when
the code heap contains no code. When a new code region is
installed, the verifier updates the three address sets; that is,
compute PSA, IBT, and DBT after taking new code into
consideration. This approach for computing these new sets
utilizes a combination of information already in the code and
meta information emitted by a modified JIT compiler. For
instance, direct branch targets (DBT) can be computed from
the code alone. For PSA, the verifier for V8 takes the start
address of the new code and identifies pseudoinstruction
boundaries by following a process similar to sequential dis-
assembly (however, no full disassembly is performed; only
the boundaries are identified as discussed in the DFA
approach herein). This is sufficient for V8. If a JIT compiler
mixes code and data in JITted code, then the JIT compiler
could be modified to also emit instruction boundary informa-
tion. For IBT, new indirect branch targets include the start
address of the function and the addresses after direct/indirect
calls in the function because V8 installs the native code of one
function at a time. In addition, there are indirect branch tar-
gets related to exception handling and optimization (e.g.,
on-stack replacement entry points in an optimized function).
Applicant modified V8 to emit these additional indirect
branch targets along with code.

With the new address sets, the verifier checks that IBT U
DBT < PSA and verifies the following constraints on the new
code. Constraint C1 requires that indirect branches and
memory-write instructions are appropriately instrumented. In
particular, only checked indirect branches and masked
memory writes are allowed. Constraint C2 requires that direct
branches jump to addresses in DBT. This ensures that the new
code respects DBT. Constraint C3 requires that the code
contains only instructions that are used for a particular JIT
compiler. This set of instructions is usually a small subset of
the native instruction set and can be easily derived by inspect-
ing the code-emission logic of a JIT compiler. Importantly,
this subset cannot contain system calls and privileged instruc-
tions.

Implementation details about a verifier constructed for V8
are provided next. First, the address sets are implemented by
bitmaps for fast look-ups and updates. Each bitmap maps a
code address to one if and only if that address belongs to the
corresponding set, otherwise zero.

Second, the speed of verification is of practical importance.
Because V8 performs frequent code installation, a slow veri-
fier can impact the performance nontrivially. For example,
NaClI-JIT includes a disassembly-based verifier and it reports
5% overhead for the verification alone. Embodiments of the
invention adopt an approach based on Deterministic Finite
Automata (DFA). It performs address-set updates and con-
straint checking in one phase. The verifier incurs only 1.7%
overhead for the verification.

In detail, embodiments of the invention use a trie structure
to enumerate all possible allowed instruction encoding. Then
the trie is converted to a DFA. The DFA has 257 states. It has
multiple acceptance states: one for recognizing a checked
indirect branch; one for recognizing a masked memory write;
one for recognizing a direct branch; one for recognizing all
other V8-allowed instructions. The verifier iterates through
all instructions recognized by the DFA. When a direct branch

US 9,361,102 B2

29

is matched, itrecords its jump target; when a checked indirect
branch, a masked memory write, or one allowed instruction is
matched, it moves forward. In the above cases, the pseudo-
instruction boundaries are also recorded. The verification
fails when the DFA reaches a failure state (e.g., due to an
illegal instruction). After all code bytes have been matched,
the verifier updates the address sets and checks that IBT U
DBT < PSA. When the verification succeeds, constraints
C1-C3 are respected by the code.

Recall that the threat model does allow attackers to write
arbitrary memory pages in the sandbox that are writable, so it
is possible that after the code is emitted in the sandbox and
before it is copied outside of the sandbox for verification, the
attackers might corrupt it. However, the corrupted code still
needs to pass the verification. Once it passes the verification,
the security benefits mentioned herein are still valid.

Jitted Code Installation, Deletion, and Modification

In RockIIT, a JIT compiler cannot directly manipulate the
code heap, which does not have the writable permission.
Instead, RockJIT provides interface functions to the JIT com-
piler for code installation, deletion, and modification. One
worry for runtime code manipulation is thread safety: one
thread is manipulating code, while another thread may see
partially manipulated code. This section discusses the
detailed steps involved in RockJIT’s code manipulation and
how thread safety is achieved.

For code installation, the JIT compiler invokes RockIIT’s
code installation service and sends a piece of native code, the
target address where the native code should be installed, and
meta information about the code for constructing new address
sets. The code-installation service then performs the follow-
ing steps.

First, the verifier performs verification on the code and
updates the address sets to PSA, IBT, and DBT.

Second, if the verification succeeds, the code is copied to
the shadow code heap at an address computed from the start
address where the code should be installed. There is a fixed
correspondence between addresses of the code heap in the
sandbox and addresses of the shadow code heap.

Third, the runtime tables used by MCFI are updated to take
into account the new code. Since coarse-grained CFI is
enforced on JITted code, only information in IBT is needed to
update the tables.

There are a couple of notes worth mentioning about the
above steps. First, the verification of benign programs is
expected to succeed if there are no bugs in the JIT compiler.
A verification failure indicates a bug that should be fixed.
Second, it is important that the MCF1 tables are updated after
copying the code, not before. During the copying process, the
code becomes partially visible to the JIT compiler as the code
heap is mapped to the same physical pages as the shadow code
heap. However, since the MCFI tables have not been updated
yet, no branches can jump to the new code, avoiding the
situation in which one thread is installing some new code and
another thread branches to partially installed code.

In a multi-threaded JIT compiler, one thread may request
the deletion of a code region, while another thread may be
executing in the middle of that code region due to JIT com-
piler bugs or attacks. For safety, the code region shall not be
deleted until all threads exit the code region. The following
steps are performed when one thread invokes the code-dele-
tion service to delete code region cr.

First, check that direct branches outside cr do not target any
instruction in cr. If this check fails, deleting cr would break
the critical invariant mentioned before; this would imply
either a bug in the JIT compiler or an attack and therefore
RockIIT simply terminates the JIT compiler in this case.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

Second, remove cr-related entries in the MCFI tables to
prevent all indirect branches from targeting cr. After this step,
no thread can enter cr simply because no direct or indirect
branch in the JITted code can target cr.

Third, check that there are no threads running (or sleeping)
in cr. To achieve this, RockJIT waits until it observes that each
thread has entered the code in RockJTT’s runtime at least once
after the update to the MCFI tables. Once a thread enters the
code in RockJIT’s runtime, it can no longer execute instruc-
tions in cr thanks to the update to the MCFTI tables.

In detail, RockJIT maintains a local counter for each
thread. The counter for a thread is atomically incremented by
one each time when the thread enters the code in RockJIT’s
runtime. When handling a code-deletion request, RockJIT
atomically reads all threads’ counters, associates them with
cr, and returns without removing cr. At a later time (e.g., inthe
next invocation of code deletion), RockJIT checks that each
thread’s current counter value is not equal to the thread’s old
counter value associated with cr. If the condition holds, it
means that after the code deletion request, each thread has
executed Rock]JIT’s code at least once and therefore no thread
can possibly run code in cr; so it can be safely deleted.

Compared to NaCl-JIT, which supports only a finite num-
ber of code deletion operations, the code deletion approach
provided herein supports an arbitrary number of code dele-
tion operations. Modern JIT engines implement mechanisms
to interrupt JITted code execution (e.g., V8 inserts extra code
to each function’s prologue and each loop to interrupt the
execution to support optimization and deoptimization).
Therefore, even if the JITted code is running in a loop, its
execution can be interrupted.

For code modification, if the new code region has the same
internal pseudo-instruction boundaries and native instruction
boundaries as the old code region and the new code passes
verification, RockJIT follows NaCl-JIT’s approach to replace
the old code with the new code. Otherwise, code modification
is implemented as a code deletion followed by a code instal-
lation.

Modification to a JIT Compiler

An existing JIT compiler needs to be modified to work with
RocklIIT. This section discusses Applicant’s adaptation of the
GOOGLE® V8 JavaScript engine (v3.25.28.3). To adapt
V8’s x86-64 source, Applicant modified only 811 lines of its
source code. 801 lines were changed to make it generate
MCFI-compatible code and invoke RockJIT’s services for
runtime code manipulation. 10 lines were added for CFG
generation, which will be discussed in the next section. This
experience partly demonstrates that modifying an existing
JIT compiler to work with RockJIT requires only modest
effort. Most of the changes to V8 were in its code-emission
logic to make the generated code compatible with MCFI1.

Code-emission functions that generate indirect branches
were modified to generate checked indirect branches. A
checked indirect branch in MCFI requires two scratch regis-
ters to hold intermediate values. Since V8 reserves r10 for its
internal use, r10 is used as one scratch register. In addition, V8
reserves r12 to always hold a constant representing integer
one. Embodiments of the invention use r12 as the second
scratch register and restore its constant value after a checked
indirect branch.

Code-emission functions for indirect memory writes were
modified to generate masked memory writes. The sandbox
resides in the [0, 4 GB) memory. Therefore, an indirect
memory write is turned into two instructions: the first loads
the target address into a scratch register r and clears the upper
32 bits; the second writes data to the address in r.

US 9,361,102 B2

31

Code-emission functions for procedure calls were modi-
fied to align the addresses immediately following the calls to
four-byte aligned addresses. All indirect branch targets need
to be four-byte aligned to allow atomic table access. The
address alignment is achieved by inserting multi-byte no-op
instructions before call instructions.

The V8 software was also modified to accommodate online
code patching. When V8 emits certain optimized native code,
it reserves some bytes in the code in anticipation of future
code patching (for a process called deoptimization). The
original V8 software reserves 13 bytes for such purpose.
RockIIT needs more bytes because of extra MCFI checks; 44
bytes are reserved instead. Finally, changes were made to V8
to invoke code installation, deletion, and modification ser-
vices provided by RocklJIT at appropriate places.

RocKkJIT changes much less code than NaCl-JIT, which
changed over 5,000 lines of code for the x86-64 version of V8.
NaCl-JIT requires more changes because: (1) it disallows the
mix of code and data in V8’s code and V8 has to be changed
to separate code and data; RockJIT’s CFI allows the mix of
code and data as long as data cannot be reached from code in
control flow; (2) NaCl-JIT uses the ILP32 programming
model on x86-64, while the native V8 uses LP64 model;
therefore, it has to change nearly the entire code-emission
logic.

C++ CFG Generation

RocKkJIT secures a JIT compiler’s code by enforcing fine-
grained CF1. A general methodology for generating fine-
grained CFGs from C/C++ programs was needed because all
JIT compilers are developed in C/C++ for performance. The
MCFI work presents such a method for C programs, but not
C++ programs.

In CFI, a binary-level CFG is enforced. In such a CFG,
nodes represent machine instructions and there is a directed
edge between two instructions if the control can possibly
reach the second instruction after the execution of the first.
The edges out of non-indirect-branch instructions can be
statically computed. The difficulty concerns indirect
branches. However, embodiments of the invention can stati-
cally compute a superset of their possible targets for approxi-
mation. In a C++ program, indirect branches are compiled
from code that uses features such as virtual method calls and
exceptions. This section discusses those C++ features and
how RockJIT approximates the resulting indirect branches’
targets by static analysis. It should be noted that C++ compi-
lation is ABI-dependent, and the CFG generation described
herein targets binaries conforming to the mainstream Itanium
C++ ABI (http://mentorembedded. github.io/cxx-abi/
abi.html) supported by LLVM and GCC. The approach has
been tested using a modified LLVM compiler (version 3.3).
Virtual Method Calls

C++ supports multiple inheritance and virtual methods. A
virtual method call through an object is compiled to an indi-
rect call (or an indirect jump with tail call optimization). A
virtual call on an object is resolved during runtime through
dynamic dispatch. Which method it invokes depends on the
actual class of the object. RockJIT performs CHA on C++
code. This analysis tracks the class hierarchy of a C++ pro-
gram and determines, for each class C and each virtual
method of C, the set of methods that can be invoked when
calling the virtual method through an object of class C; these
methods might be defined in C’s subclasses. RockJIT allows
a virtual method call to target all methods determined by the
CHA analysis. CHA is usually a whole-program analysis. To
support separate compilation, embodiments of the invention
emit a class hierarchy for each module and combines mod-
ules’ class hierarchies at link time.

15

25

30

40

45

50

55

32

Function Pointers

C++ supports two kinds of function pointers: (1) those that
point to global functions or static member methods; and (2)
those that point to non-static member methods. Function
pointers in these two kinds have different static types. Their
target sets are disjoint and they are handled differently by
compilers. Appendix C shows a code example about the two
kinds of function pointers. Function pointer fp is of the first
kind. Itis assigned to the address of a global function getpag-
esize at line 2. At line 3, the function pointer is invoked via an
indirect call (or indirect jump if it is a tail call). To identify its
targets, RockJIT adopts a typematching method that is similar
to our previous MCFI work: an indirect branch via a function
pointer of type ©* can target any global function or static
member method whose static type is equivalent to T and
whose address is taken in the code.

Function pointer memfp at line 7 is of the second kind. The
code assumes Pigeon is a subclass of Animal. According to
the C++ semantics, embodiments of the invention allow an
indirect branch through such a function pointer of type T to
target any member method defined in the same class whose
type is equivalent to T and whose address is taken. Further, for
each matched virtual member method, embodiments of the
invention search the class hierarchy to find in derived classes
all virtual methods whose types match and add those func-
tions to the target set.

Exception Handling

This second first discusses how C++ exceptions are
handled by LLVM that implements the Itanium C++ ABI. In
this ABI, C++ exception handling is a joint work of the
compiler, a C++-specific exception handling library such as
libc++abi and a C++-agnostic stack-unwinding library such
as libunwind.

When a compiler compiles a C++ program, it emits suffi-
cient information for stack unwinding, since every stack
frame needs to be searched to find a matching catch clause for
a thrown exception object. Such data is emitted as metadata
(e.g., the eh_frame and gcc_except_table sections in an ELF
file) during compilation. FIG. 11 depicts the runtime control
flow when an exception object is thrown. It assumes libc++
abi and libunwind are used; the control flow would be the
same when other libraries are used as long as they obey the
Itanium C++ ABIL.

The left box in FIG. 11 shows some assembly code in
which the Ltry label starts a C++ try statement and Lcatch
implements a catch statement. A C++ throw statement is
translated to a direct call to libc++abi’s_cxa_throw, which
takes three arguments: the heap-allocated exception object,
its type information, and destructor. It performs initialization
and invokes_Unwind_-RaiseExcept ion in libunwind, which
extracts the code address where the exception is thrown and
walks through each stack frame by consulting the eh_frame
section. In each stack frame, _Unwind_RaiseException uses
an indirect call to invoke a C++-specific routine called _gxx-
_personality_v0. It is defined in libc++abi and searches for
catch clauses in that frame by consulting gec_except_table.
Two cases can happen. If a type-matching catch clause is
found in the current frame, then control is transferred to the
catch clause via an indirect branch, called Cat chBranch. If a
type-matching catch is not found, the stack unwinding should
be resumed. However, if there is a clean-up routine that is
used to deallocate objects allocated in try statements, then the
clean-up routine needs to execute before the unwinding con-
tinues. It turns out that the same indirect branch (Catch-
Branch) is used to transfer the control to the clean-up routine,
but with a different target address.

US 9,361,102 B2

33

All control-flow edges in FIG. 11, except for the edges out
of CatchBranch, can be handled using the strategies discussed
herein (CHA analysis and the type-matching method). For the
CatchBranch, the implementation connects it to all catch
clauses and cleanup routines. To support separate compila-
tion, RockJIT’s modified LLVM compiler emits a table
recording addresses of all catch clauses and cleanup routines
in each module, and these tables are combined during linking.

If an exception object is caught, but not rethrown, libc++
abi also invokes the object’s destructor, which is registered
when calling _cxa_throw. The invocation is through an indi-
rect call. Possible targets of this call in a module can be
statically computed by tracking _cxa_throw invocations. As a
result, RockJIT’s C++ compiler also remembers these target
addresses for each module and combines them at link time.
Global Constructors and Destructors

The constructors of global and local static objects’ are
invoked before the main function of a C++ program, and their
destructors are called after the main function returns. LLVM
handles such cases by generating stub code for each such
object. The stub code directly invokes the constructor and
registers the destructor using either _cxa_atexit or atexit
defined in libc. The addresses of the stub code are arranged in
the binary and iterated through by an indirect call (called
CtorCall) in libc before main. After main, another libc indi-
rect call (called DtorCall) iterates through the registered
destructors to destroy objects. Both CtorCall and DtorCall’s
targets are statically computable by analyzing the compiler-
generated stub code.

Other Control-Flow Features

Return instructions are handled in the same way as MCFI.
By analyzing the targets of call instructions, embodiments of
the invention first construct a call graph. Then a return instruc-
tion in a function can return to any address immediately
following a call that can invoke the function according to the
call graph.

Switch and indirect goto statements are typically compiled
to jump-table based indirect jumps; their targets can be stati-
cally extracted from read-only jump tables. These indirect
jumps are subject to static verification and do not need instru-
mentation.

Lambda functions are available in C++11, whose related
control-flow edges are also supported by the CFG generation
approaches described herein. Compilers automatically con-
vert lambda functions to functors, which are classes with
operator() methods. Therefore, control-flow edges related to
the operator() methods in such structures can be approxi-
mated using the CFG generation method discussed herein.
Conditions for C++ CFG-Generation Method

The CFG-generation method described herein is largely
type based. Indirect calls through a function pointer to a
global function is allowed to call any global function whose
type matches the function pointer’s type. The class hierarchy
analysis, which is used to resolve virtual method calls, is also
based on static types. As a result, if a C++ program misuses
types using features such as arbitrary type casts, then the
CFG-generation method may construct a CFG whose edges
do not cover all dynamic control flow of the program;
enforcement of such a CFG would break the program’s
execution. On the other hand, Applicant believes that the
method will not break a C++ program’s execution if the
following conditions are met: (1) no type cast to or from
function pointer types; (2) no C-style type cast or reinterpret_
cast from or to classes with virtual member methods; (3) no
inlined assemblies. These conditions are similar to the ones in
MCFTI’s CFG construction for C programs.

10

15

20

25

30

35

40

45

50

55

60

65

34

Applicant built a static checker to catch violations of the
above conditions in C++ programs in LLVM’s front-end,
Clang. Violations reported by the checker on a C++ program
can be straightforwardly fixed to be compatible with the
CFG-generation method using the wrapper approach
described in the context of MCFI. For V&, which has over
555,000 lines of code, Applicant modified only 10 lines of
code using the wrapper approach to make it compatible with
the CFG-generation method. Applicant also tried this
approach on the seven C++ programs in SPECCPU2006 as
well as libc++, libc++abi, and libunwind for a total over
620,000 lines of code, only 35 lines of code (all in SPEC-
CPU2006 benchmark 453.povray) need to be changed to
generate CFGs using the method described herein. In addi-
tion, all of the generated CFGs have been tested on data sets
that come with those benchmarks and the results are summa-
rized below and in FIG. 12.

Applicant measured MCFI’s performance overhead on
SPECCPU2006 C++ benchmarks. The experiments were
conducted in the same environment as mentioned in the
“Evaluation” section herein. All benchmark programs and
their dependent libraries were compiled with the O3 optimi-
zation. The results are averaged over three runs and presented
in FIG. 12. The x86-32 and x86-64 bars are results of bench-
marks compiled with -m32 and -m64 compiler options,
respectively. As can be seen, MCFI incurs around 6.8%/
15.7% (average/maximum) performance overhead on C++
benchmarks.

CFG Statistics for C++ Programs

Table 6 shows CFG generation statistics for V8 and the
C++ benchmarks in SPECCPU2006. They are compiled with
the O3 optimization (on V8, tail call optimization is turned off
for more equivalence classes of return instructions and yet
performance overhead is negligible) and are statically linked
with dependent libraries including libc++, libc++abi, libun-
wind, and MUSL libe. For each program, the table lists its
source lines of code (SLOC) and the number of indirect
branches (IB). The table also presents statistics for the CFGs
generated using RockJIT’s CFG-generation method. The col-
umn IBT lists the number of indirect-branch targets in the
CFGs. It is the number of functions whose addresses are
taken, plus the number of return addresses, plus the number of
catch clauses and clean-up routines. The column EQC pre-
sents the number of equivalence classes of addresses in the
CFG. RockJIT follows the original CFI described in Abadi of
using equivalence classes: two addresses are equivalent if
there is an indirect branch that can jump to both targets
according to the CFG. If the target sets of two indirect
branches are not disjoint in the CFG, then the two sets are
merged into one equivalence class and the two indirect
branches are allowed to jump to any target in the equivalence
class. This process results in some loss of CFG precision.
However, as can be seen from Table 6, V8 still has over 10k
equivalence classes of target addresses (note that EQC is
upper bounded by IB). This is much stronger than coarse-
grained CFI, which enforces only one or several equivalence
classes.

TABLE 1

CFG statistics for V8 and SPECCPU2006 C++ benchmark:

Program SLOC IB IBT EQC
V8 555,383 34,279 100,497 10,452
444 namd 3,886 598 4,694 287
447 dealll 93,384 11,426 58,930 2,529

US 9,361,102 B2

35
TABLE 1-continued

CFQ statistics for V8 and SPECCPU2006 C++ benchmark

Program SLOC B IBT EQC

450.soplex 28,277 4554 17,944 1,387

453.povray 78,705 2,247 15,477 1,048

471 .omnetpp 19,991 5,672 30,781 1,494

473 astar 4,280 544 3,813 293

483.xalancbmk 267,399 27,397 94,103 6,490
Evaluation

Applicant evaluated RockJIT’s security and performance
using the GOOGLE® V8 JavaScript engine. All experiments
were conducted on a system with x86-64 Ubuntu 14.04, an
INTEL CORE® 17-3770 CPU, and 8 GB physical memory.
All programs tested were compiled to 64-bit binaries at opti-
mization level three.

Security Evaluation

By enforcing fine-grained CFI on V8’s code, RockJIT
improves its security. ROP attacks are restricted in terms of
both the available gadgets and how gadgets can be chained to
form an attack. To test the first aspect, Applicant used a
ROP-gadget finding tool, rp++ (https://github.com/OverclOk/
rp), to find the number of unique gadgets that can be found in
the native V8 and RockJIT-hardened V8. In the hardened V8,
a potential gadget has to start at a valid indirect branch target
(e.g., areturn address). Applicant’s result shows that RockJIT
can eliminate nearly 98.5% gadgets from V8’s code base.
Applicant also tried the tool on those SPEC C++ benchmarks
and RockJIT can eliminate 98.3% gadgets from those bench-
marks. A caveat about these data is that they depend on a
specific gadget-finding tool. Other tools might use different
definitions of gadgets.

Fine-grained CFI further improves security by eliminating
many more functionality-irrelevant control-flow edges and
therefore restricting how gadgets can be chained. The execu-
tion of gadget g can be followed by only those gadgets whose
start addresses can be targeted by the indirect branch at the
end of g. By contrast, coarse-grained CFI allows gadget g to
be followed by all other gadgets (assuming only one equiva-
lence class is enforced). As a concrete comparison, Table 7
lists the number of edges for indirect branches in NaCI-JIT
V8’s CFG, which enforces coarse-grained CFI, and the num-
ber in RockJIT V8’s CFG.

TABLE 7
V8 defenses NaCI-JTTV8 RockIIT V8
Total # of indirect-branch 7,976,474,777 2,051,600

edges

Because NaCl-JIT allows an indirect branch to target any
32-byte aligned address, the number of indirect-branch edges
for NaCl-JIT V8 is computed by IB*CodeSize/32, where 1B
is the number of indirect branches in V8 and CodeSize is the
size of V8’s code. The number for RockJIT V8 is computed
by summing the out degrees of indirect-branch nodes in its
CFG. RockJIT eliminates 99.97% more edges for indirect
branches in V8 compared to NaCl-JIT. Therefore, Applicant
believes that fine-grained CFI improves security signifi-
cantly.

Performance Evaluation

RocKkJIT incurs performance overhead because of inlined
checks and JITted code verification. Applicant ran RockJIT-
hardened V8 on the Octane 2 JavaScript benchmarks (https://
developers.google.com/octane/benchmark, revision 33) and

10

15

20

25

30

35

40

45

50

55

60

65

36

measured the performance overhead. Octane 2 consists of 17
tests, which measure different aspects of a JavaScript com-
piler, from speed of bit operations to compiler latency. Each
benchmark was run ten times and the variance was less than
2%. F1G. 13 presents the performance overhead of the bench-
marks. As a summary, RockJIT imposes 14.6% average over-
head over all tests and the maximum overhead is 36.4%.

RockIIT’s performance overhead varies over different
benchmarks. Through V8’s internal performance profiler, the
less frequently a benchmark’s execution stays in the JITted
code, the more overhead RockJIT tends to incur on the bench-
mark. Without being bound by theory it is believed that the
density of indirect branches in V8’s runtime is roughly four
times the density of indirect branches in its JITted code. For
example, the NavierStokes benchmark (as well as Crypto)
reports nearly zero performance overhead, mainly because
96% of'its execution is in the JITted code. In the JITted code,
over 96% execution is in optimized loops that iterate through
numeric arrays, during which indirect branches and indirect
memory writes are rare. As an example of the other extreme,
the Codel.oad benchmark reports the largest overhead of
36.4%. The benchmark measures the compilation latency and
nearly 98% of execution is performed on the V8 runtime for
compilation. Other benchmarks with large JavaScript code
base such as the Pd{JS, Mandreel and Typescript also spend
great portions of time in the V8 runtime, incurring relatively
large overhead.

In general, RockJIT’s performance overhead are due to
three major contributors: the inlined checks in V8 runtime’s
code, the inlined checks in JITted code, and verification. The
following table shows the performance overhead of each
contributor over Octane 2 benchmarks. These overheads were
generated by disabling factors one at a time. These overheads
cannot be simply added because they are not independent.

TABLE 8

Aspects V8 Runtime Checks JITed Code Checks Verification

Overhead 4.3% 8.4% 1.7%

NaCl-JIT and librando tested overheads on a subset of the
Octane 2 benchmarks. NaCl-JIT incurs about 51% overhead
on average, and librando 265.8%. On the same subset, Rock-
JIT incurs 9.0% overhead. NaCl-JIT is slower mainly
because: (1) NaCl-JIT emits many more no-ops for 32-byte
alignment, whose execution consumes roughly 37% extra
time (in contrast, Rock-JIT requires that indirect branch
addresses are four-byte aligned and does not insert many
no-ops) and (2) RockJIT’s DFA-based verification (1.7%
overhead) is faster than NaCl’s disassembly-based verifica-
tion (5% overhead).

Applicant also tested RockJI T-hardened V8’s performance
on the MOZILLA® Kraken benchmarks (http://kraken-
benchmark.mozilla.org/), and the results (depicted in FIG.
13) show that on the average of ten runs, RockJIT incurs
10.8% overhead with less than 1% variance, similar to the
results on Octane 2.

Code Size Increase

With all the libraries linked, the code of the RockIIT-
hardened V8 is 37.5% larger than its native counterpart, due to
the CFI checks. The execution of all Octane 2 benchmarks
generates around 9.9% more code in the code heap than the
native V8. The reason why the JITted code has less code-size
increase is that it uses less indirect branches. By contrast,
V8’s code uses virtual method calls heavily.

US 9,361,102 B2

37

Per-Input Control-Flow Integrity (PICFI or CFI)

Embodiments of the invention enable Per-Input Control-
Flow Integrity (PICFI or CFI), which is a new CFI technique
that can enforce a CFG computed for each concrete input. CFI
starts executing a program with an empty CFG and lets the
program itself lazily add edges to the enforced CFG if such
edges are required for the concrete input. The edge addition is
performed by CFl-inserted instrumentation code. To prevent
attackers from arbitrarily adding edges, CFI uses a statically
computed all-input CFG to constrain what edges can be
added at runtime. To minimize performance overhead, opera-
tions for adding edges are designed to be idempotent, so they
can be patched to no-ops after their first execution. As the
evaluation herein demonstrates, CFI provides better security
than conventional fine-grained CFI with comparable perfor-
mance overhead.

Introduction

Modern software exploitation techniques such as Return-
Oriented Programming (ROP) rely on hijacking the control
flow of a victim program to abnormally execute dangerous
system calls (e.g., mprotect and execve). Although main-
stream operating systems (i.e., Windows, Linux and OSX)
have deployed mitigation methods such as Data Execution
Prevention (DEP) and Address Space Layout Randomization
(ASLR), control-flow hijacking is still one of the largest
threats to software security. Besides those already-in-use
mitigation methods, another effective way of defending
against control-flow hijacking attacks is Control-Flow Integ-
rity (CFI) as described in Abadi. In its conventional form, CFI
statically computes a Control-Flow Graph (CFG) and instru-
ments the binary code by adding checks before indirect
branches (i.e., indirect calls, indirect jumps, and returns).
These checks ensure any control transfer during execution
never deviates from the CFG, even under attacks.

Despite effectiveness, not every CFI implementation pro-
vides the same level of protection, since CFI’s security
depends on the precision of the enforced CFG. The more
precise the CFG is, the less choices attackers have when
redirecting the control flow, the more security a particular CFI
implementation provides. Coarse-grained CFI enforces a
coarse-grained CFG in which there are a few equivalence
classes of target addresses (or even just one equivalence class)
and an indirect branch is allowed to target one of the equiva-
lence classes. For example, binCFI allows return instructions
to return to all possible return addresses. Unfortunately, the
precision of coarse-grained CFI is too low and it is still
possible to mount ROP attacks on coarse-grained CFI. Fine-
grained CFI enforces a much higher-precision CFG; each
indirect branch can have its own set of target addresses. For
instance, MCFI and forward-edge CFI are compiler-based
frameworks that build fine-grained CFGs from source code
using high-level type information.

Whether it be coarse-grained or fine-grained CFI, a funda-
mental limitation of previous CFI methods is that the
enforced CFGs are computed by static analysis, which has to
consider all possible program inputs. Consequently, the pre-
cision of a statically computed CFG cannot be better than an
“ideal” CFG, which is the minimal CFG when considering all
program inputs. Computing such “ideal” CFGs is in general
intractable. More importantly, even an “ideal” CFG includes
unnecessary edges for a concrete program input. Therefore,
our idea is to explore whether it is possible to generate a CFG
for each concrete input and enforce it at runtime for that input
alone. Intuitively, the per-input CFG should have a much
better precision than a statically computed, all-input CFG.

Embodiments of the invention enable Per-Input Control-
Flow Integrity (PICFI, or CFI), a general CFI method for

10

15

20

25

30

35

40

45

50

55

60

65

38

generating and enforcing per-input CFGs. Since it is impos-
sible to enumerate all inputs of a program, computing the
CFG for each input and storing all per-input CFGs are infea-
sible. Instead, embodiments of the invention adopt the fol-
lowing approach: let the program start with the empty CFG
and also let the program lazily compute the CFG on the fly.
One idea of computing the CFG lazily is to add edges to the
CFG at runtime before indirect branches need those edges. In
this way, the per-input CFG generation problem becomes
feasible: for an arbitrary input, the dynamically generated and
enforced CFG is equivalent to what should have been com-
puted prior to the execution.

Embodiments of the invention address to particular chal-
lenges. First, untrusted code must be prevented from arbi-
trarily adding edges. CFI should be able to identify those
edges that shall never be added. To address this challenge,
CF1 first computes an all-input CFG statically. CFI’s imple-
mentation relies on MCFI for the all-input CFG generation,
but it could be based on any previous CFI method. Then CFI
starts running the program with the empty CFG being
enforced. At runtime, the program adds edges on the fly, but
CF1 disallows addition of any edge not included in the static,
all-input CFG. In other words, the all-input CFG serves as the
upper bound for what edges can be added to the enforced CFG
during runtime.

The second challenge is how to achieve small performance
overhead for enforcing CFI. For each indirect branch, there is
a need to add the necessary edge into the CFG. This can be
achieved by code instrumentation, that is, by inserting extra
code that adds edges into the original program. However,
such instrumentation can be costly since every time the indi-
rect branch is executed, the edge-addition operation needs to
be performed. CFI adopts a performance optimization tech-
nique, with some loss of CFG precision. This technique turns
edge addition to address activation. In particular, instead of
directly adding edges, CFI activates target addresses. Activat-
ing an address essentially adds all edges with that address as
the target into the currently enforced CFG. The benefit of
using address activation operations is that they can be made
idempotent operations with some careful design. Idempotent
operations can safely patched to no-ops after their first execu-
tion, minimizing performance overhead.

Embodiments of the invention enable CFI, a general CFI
method for generating and enforcing per-input CFGs. Experi-
ments show that CFI eliminates many unnecessary edges in
its enforced CFGs. For SPECCPU2006 benchmarks, on aver-
age the number of edges in the enforced CFGs are only about
10.4% of the number of edges in static, all-input CFGs. More-
over, CFI’s runtime overhead is small; only 3.2% on average
for SPECCPU2006 benchmarks.

Embodiments of the invention provide techniques that
make the per-input CFI idea efficient and secure, including
lazy CFG computation, idempotent address activation, and
secure code patching.

Applicant also built a framework to harden applications
with CFI, and evaluated CFI’s security and performance with
respect to SPECCPU2006, the GOOGLE® V8 JavaScript
engine, and the NGINX® HTTP server.

CFI Motivation And Overview

Before introducing the detailed system design of CF]I, this
section presents an overview, including its threat model, some
terminology, motivation for per-input CFGs, and the benefits
of address activation.

Threat Model

CF1 protects user-level applications. Its trusted computing
base includes the following components: the underlying soft-
ware-hardware stack (including the CPU, the virtual machine

US 9,361,102 B2

39

if there is one, and the operating system); CFI’s LLVM-based
compilation toolchain; and CFI’s runtime. In the entire
execution of a CFI-protected program, the runtime maintains
the code and data separation: those virtual memory pages
containing code (including dynamically generated code) and
read-only data are non-writable, and those virtual pages con-
taining data are non-executable. Similar to other CFI work,
CFI assumes that attackers have full control over all writable
virtual memory pages allocated to the application. An
attacker can modify any location of those pages between two
consecutive instructions.

Terminology

Conceptually, a CFI method involves two kinds of control-
flow graphs: a Static CFG (SCFG) that is typically computed
by static analysis and an Enforced CFG (ECFG) that is con-
sulted before indirect branches to decide whether indirect
branches are allowed.

In previous CFI methods (also referred to as “conventional
CFI), SCFG and ECFG are the same notion. In CFI, the SCFG
and ECFG are distinct. When a program starts in CFI, the
ECFG is the empty graph. As the program runs, the ECFG
grows, but CFI uses the SCFG to upper bound the growth; that
is, the ECFG is always a subgraph of the SCFG.

These two kinds of CFGs could be represented as two
separate data structures, but CF1 uses one single data structure
to represent both: the SCFG is represented as two tables; the
ECFG is represented by marking the SCFG with special bits,
which tell what addresses have been activated.

Motivation for Per-Input CFGs

CFI’s Enforced CFG (ECFG) is computed for each specific
input. A toy C program listed in Appendix D illustrates its
high-level idea and security benefits. The main function in the
program has an if branch, whose condition depends on the
number of command-line arguments. Assume that the num-
ber of command-line arguments is greater than or equal to two
in a particular production environment. The main function
invokes the foo function (whose code is omitted) to handle
user inputs. Assume that foo’s code has a stack-overflow
vulnerability that enables attackers to control its return target.
Apparently, this vulnerability can be easily exploited to
hijack the control flow ofthis program. (For simplicity, ignore
ASLR and stack canaries, since they are orthogonal defense
mechanisms to CFI.) With conventional CFI protection,
which enforces a CFG for all inputs, this particular program is
still vulnerable. Notice that the main function invokes foo at
two different places. As a result, both L1 and 1.2 are possible
return addresses for foo. In conventional CFI, foo’s return is
always allowed to target both addresses. Therefore, evenifthe
program executes only the else branch when deployed,
attackers can still control foo’s return and redirect it to L1.
With appropriate data manipulation, the attacker might
execute the following execve with arbitrary arguments.

With CF1, such an attack can be prevented. One possible
instrumentation method is shown in Appendix E so that the
program can add its required edges during execution. (Instead
of'edge addition, CFI actually uses address activation, which
will be discussed later.) The program is started with the empty
ECFG. At runtime, the else branch will be executed, but right
before foo is called at line 20, the edge from foo’s returnto 1.2
is added (by calling CFI’s trusted runtime at line 19). When
foo returns, it is only allowed to target .2, not L1, as no such
an edge has been added to the ECFG.

The example of Appendix D can also be protected by
defenses that protect the stack through a shadow stack. For
instance XF1 (described in U. Erlingsson et al., “XFI: Soft-
ware Guards for System Address Spaces” in USENILX Sym-
posium on Operating Systems Design and Implementation

10

15

20

25

30

35

40

45

50

55

60

65

40

(OSDI) 75-88 (2006)) adopts the shadow-stack defense to
protect return addresses. This ensures that a function returns
to the caller that called it. As a result, the return instruction in
foo can return only to L2 when it is called in the else branch.
In comparison, CFI’s protection on return instructions is
weaker: it ensures a return instruction in a function can return
to only those call sites that have so far called the function. On
the other hand, CFI offers a number of benefits than the
shadow-stack approach. First, in addition to protecting
returns, it also protects other indirect branches. For instance,
if in an SCFG an indirect call is allowed to target two func-
tions, say f1 and f2, but in one code path only f1°s address is
taken, then the indirect call will be disallowed to target f2 in
CF1I. Second, the shadowstack defense traditionally has com-
patibility issues with code that uses unconventional control-
transfer mechanisms including setjmp/longjmp, exceptions,
and continuations since they do not follow the rigid call-
return matching paradigm. CFI offers the compatibility
advantage because it can be parametrized by any SCFG and is
compatible with code that uses unconventional control-trans-
fer mechanisms.

However, since CFI does not perform address deactivation
(except in rare situations when a code module is explicitly
unloaded), one worry is that most of the time its ECFG grows
along with the program execution. In theory, an attacker
might use some malicious input to trigger the activation of all
targets in an SCFG, in which case CFI falls back to conven-
tional CFI. This is especially a concern for a long running
program that keeps taking inputs, such as a web server or a
web browser. However, Applicant believes CFI offers ben-
efits even in such kind of programs, for at least the following
reasons.

First, an attacker would need to find a set of inputs that can
trigger the activation of all targets; this is essentially asking
the attacker to solve the code coverage problem, a tradition-
ally hard problem in software testing.

Second, preliminary experiments presented herein suggest
that the number of edges in an ECFG stabilizes to a small
percentage of the total number of edges in an SCFG even for
long running programs that continuously take user inputs.
Applicant believes this is due to several factors. First, a typi-
cal application includes a large amount of error-handling
code, which will not be run in normal program execution.
Second, an application may contain code that handle different
configurations (like the motivating example) of execution
environments. It is generally hard for a static analysis to
construct a per-configuration CFG as it has to consider fea-
tures such as environment variables and C macros. Finally,
there may be dead code in the application that static analysis
may fail to recognize. It is especially the case for functions in
library code.

Third, a long running program that continuously takes user
inputs typically forks new processes or pre-forks a pool of
processes for handling new inputs. For instance, web servers
such as APACHE™ and NGINX® pre-fork a process pool for
handling web requests. In CFI, the CFG growth of a child
process is independent from the CFG growth of the parent
process. This setup limits the CFG growth of such programs.
From Edge Addition to Address Activation

The simple instrumentation shown in Appendix E has per-
formance problems: each time foo is invoked, add_edge is
also invoked. Although static analysis can be used to elimi-
nate redundant edge addition calls (e.g., it might be possible
to hoist such calls outside a loop), it would be hard to mini-
mize such instrumentation code. Instead, embodiments of the
invention utilize an alternative approach.

US 9,361,102 B2

41

Every operation that modifies the ECFG is designed to be
idempotent and eliminated by patching it to no-ops after its
first execution. An idempotent operation is designed so that
the effect of performing it twice is the same as the effect of
performing it only once. Therefore, after the first time, there
is no need to perform it again. For example, the operation on
line 19 in Appendix E is idempotent: it transters the control to
the trusted runtime, and the runtime adds an edge from foo’s
return to L2 to the CFG. Before the runtime returns, it can
patch the code at line 19 with no-ops to reduce any subsequent
execution’s cost. (The edge addition happens only once in the
code of Appendix E, but in other examples such an operation
may be executed multiple times, for instance, when it is in a
loop.) Furthermore, will be explained further, using idempo-
tent operations is also important for code synchronization
when performing online code patching in multi-threaded
applications running on multi-core architectures.

However, how can every edge addition be made idempo-
tent? Consider an example of an indirect call. Before the
indirect call, an edge addition could be added to register the
edge required to execute the call. However, this operation is
not idempotent, because the indirect call may have a different
target next time it is invoked. One solution is to use an opera-
tion thatadds all possible edges for the indirect call according
to the SCFG. This operation is idempotent, but is incompat-
ible with dynamic linking, during which the SCFG itself
changes and new targets for the indirect call may be added.

Embodiments of the invention turn edge addition to
address activation of statically known addresses so that every
operation becomes idempotent. In general, only if an indirect
branch’s target address is activated can the address be reach-
able by the indirect branch. Activating an address has the
same effect as adding all edges that targets the address from
the current (and future) SCFG to the current (and future)
ECFG. Activating a statically known address is idempotent,
as activating the same address twice has the same effect as
activating it only once.

CFI System Design

This section discusses the detailed system design of CFI,
including how it achieves secure online code patching, how it
activates addresses for each kind of indirect branch target
addresses, and how it is made compatible with typical soft-
ware features.

Secure Code Patching

Idempotent address-activation operations allow CFI to
patch the operations with no-ops after their first execution, but
the patching should be securely performed. Online code
patching typically implies granting the writable permission to
code pages, which enables code-injection attacks. To avoid
such risks, embodiments of the invention adopt the approach
of RockJIT described herein that securely handles JITted
code manipulation and generalize it to patch regular code
(i.e., non-JITted code).

FIG. 15 shows the memory layout of an application pro-
tected with CFI. The application should have been compiled
and instrumented by CFI’s compilation toolchain. The appli-
cation and all its instrumented libraries are loaded into a
sandbox created by the CFI runtime. The sandbox can be
realized using Software-based Fault Isolation (SFI) as
described in R. Wahbe et al., “Efficient Software-based Fault
Isolation” in Proc. of the 14th ACM Symposium on Operating
Systems Principles (SOSP °93) 203-16 (1993) or some hard-
ware support. For example, one can instrument all memory
writes to ensure their targets always stay within the sandbox.
Code in the sandbox cannot arbitrarily execute or write
memory pages outside the sandbox, but has to invoke tram-
polines provided by the CFI runtime; these trampolines allow

5

10

15

20

25

30

35

40

45

50

55

60

65

42

the untrusted code to escape the sandbox safely. The runtime
also maintains the invariant that no memory pages in the
sandbox are writable and executable simultaneously, at any
time. In addition, the runtime guarantees that read-only data,
such as jump tables, are not writable. Outside the sandbox
stay the CFI runtime and the encoded SCFG/ECFG. The
encoded SCFG/ECFG is read-only from the application’s
perspective, but writable by the runtime.

To enable secure patching, CFI’s runtime allocates another
set of writable virtual memory pages, called shadow code
pages, outside the sandbox and maps these pages to exactly
the same physical pages as the application’s code pages inside
the sandbox. The shadow code pages are writable by the
runtime, but cannot be modified by the application since those
pages are outside the sandbox. In this way, CFI maintains the
invariant that no memory pages in the sandbox are writable
and executable at the same time. More importantly, the CFI
runtime can securely perform code patches on the shadow
code pages and these changes are synchronously reflected in
the application’s code pages since they are mapped to the
same physical pages.

FIG. 15 also shows parallel mapping of the read-only data.
They contain runtime-adjustable read-only data, especially
the GOT.PLT data in Linux. The PLT (Procedure Linkage
Table) contains a list of entries that contain glue code emitted
by the compiler to support dynamic linking. Code in the PLT
entries uses target addresses stored in the GOT.PLT table
(GOT is short for Global Offset Table). The GOT.PLT table is
adjusted during runtime by the linker to dynamically link
modules. However, security weakness also results from the
GOT.PLT table’s writability, as demonstrated by a recent
attack. To address this security concern, CFI sets the
GOT.PLT table to be always read-only inside the sandbox and
creates outside the sandbox a shadow GOT.PLT table, which
is mapped to the same physical pages as the in-sandbox
GOT.PLT table. All changes to the GOT.PLT table are there-
fore performed by the CFI runtime, which ensures that each
entry’s value is the address of either the dynamic linker or the
address of a function whose name is the same as the corre-
sponding PLT entry’s name.

Address Activation

CFI dynamically activates indirect branch targets. When a
target address is submitted to CFI’s runtime for activation, it
consults the encoded SCFG to check if the address is a valid
target address; if so, the runtime activates the address (by
enabling it in the ECFG) so that future indirect branches can
jump to it.

For each target address, there is a time window during
which that target can be activated—from the beginning of
program execution to immediately before the target is first
used in an indirect branch; in the case when a target is never
used in a program run, the time window is from the beginning
of'program execution to infinity. One way to think of conven-
tional CFlisto view itas an approach that eagerly activates all
target addresses at the beginning of program execution. CFI,
on the other hand, wants to delay address activation as late as
possible to improve security. One natural approach would be
to always activate a target immediately before its first use.
This approach, however, does not take into account other
constraints, which are discussed as follows.

The first constraint is idempotence. For efficiency, every
address-activation operation should be idempotent so that it
can be patched to no-ops after its first execution. This con-
straint implies that not every address activation can happen
immediately before its first use. If an address-activation
operation is inserted for the actual target immediately before

US 9,361,102 B2

43

the indirect call, that operation is not idempotent because the
target might be different next time the indirect call is invoked.

The second constraint is atomic code updates. It is tricky to
perform online code patching on modern multi-core proces-
sors. If some code update by a thread is not atomic, then it is
possible for another thread to even see corrupted instructions.
Therefore, a CFI patch operation must be atomic, which
means that any hardware thread should either observe the
address-activation operation before the patch or the no-ops
after the patch. Fortunately, x86 CPUs manufactured by both
Intel and AMD support atomic instruction stream changes if
the change is of eight bytes and made to an eight-byte aligned
memory address. Embodiments of the invention take advan-
tage of this hardware support to implement CFI’s instrumen-
tation and patching. It is important to stress that it is possible
that the code in memory has been atomically patched by one
thread, but the code cache for a different hardware thread
might still contain the old address-activation operation. Con-
sequently, the address-activation operation may be re-ex-
ecuted by the second thread. However, since all our address-
activation operations are idempotent, their second execution
does not produce further effect. Once again, idempotence
produces further benefits.

Therefore, the issue of when to activate a target address has
to be carefully studied considering the aforementioned con-
straints. CFI selects different design points for different kinds
of target addresses, including return addresses, function
addresses, virtual method addresses, and addresses associ-
ated with exception handlers. Each kind of these target
addresses has different activation sites, which will be dis-
cussed next. Without losing generality, x86-64 Linux is used
as an example to discuss the technical details below. As dis-
cussed below, activation of target addresses is the result of a
careful collaboration between CFI’s compilation toolchain,
its loader, and its runtime.

Return Addresses

The most common kind of indirect-branch targets is return
addresses. A return address could be activated immediately
before a return instruction. However, it would not be an idem-
potent operation as the same return instruction may return to
a different return address next time it is run. Instead, CFI
activates a return address when its preceding call instruction
is executed. The activation procedure is different between
direct calls and indirect calls, which are discussed separately
next.

Appendix F illustrates the activation procedure for a direct
call. The following steps can be used to activate return address
L following a direct call to foo.

First and before the direct call, CFI’s compilation toolchain
inserts appropriate no-ops (line 3) to align L to an 8-byte
aligned address. CFI’s implementation is based on MCFI as
described herein, which requires all target addresses to be
8-byte aligned.

Second, when the code is loaded into memory by CFI’s
loader (part of its runtime), the immediate operand of the call
instruction (line 4) is replaced with an immediate called
patchstub, as shown in Appendix F, branch (b). Therefore, the
call is redirected to patchstub, whose code is listed in Appen-
dix G.

Third, when line 4 is reached after the program starts
execution, the control transfers to patchstub. It firstly pops the
return address L from the stack (line 2 in Appendix G) to %
r11, which can be used as a scratch register thanks to the
calling convention of x86-64 Linux. It then invokes return_
address_activate provided by CFI’s runtime. (The % gs seg-
ment register points to an area outside of the CFI sandbox.)

10

15

20

25

30

35

40

45

50

55

60

65

44

Fourth, the runtime, once entered, saves the context and
activates L by updating the ECFG. CFI reuses MCFI’s tables
for encoding an SCFG. There is a Tary table in MCF1I that lists
all valid target addresses. Activating an address is associated
with an update to the Tary table to enable the address as will
be discussed in greater detail herein.

Fifth, the runtime then copies out eight bytes from [L-8, L),
modifies the immediate operand of the call instruction to
target foo, and uses an 8-byte move instruction to patch the
code, as shown in Appendix F, branch (c). Finally, the runtime
restores the context and jumps to line 4 in Appendix F, branch
(c) to execute the patched call instruction.

A few points are worth further discussion. First, since any
return address is 8-byte aligned and any direct call instruction
is 5-byte long, 8-byte atomic code update is always feasible
and consequently all threads either call patchstub or foo.
Second, the ECFG update should always be conducted prior
to the update that changes patchstub to foo; otherwise another
thread would be able to enter foo’s code and execute foo’s
return instruction without I being activated.

Finally, the patchstub uses the stack to pass the address to
be activated and therefore there is a small time window
between the call to patchstub and the stack-pop instruction in
patchstub during which an attacker can modify the return
address on the stack. However, the most an attacker can do is
to activate a different valid target address because the CFI
runtime would reject any invalid target address according to
the SCFG. More importantly, because there are CFI checks
before return instructions, CFI will never get violated. If one
wants to guarantee that CFI always activates the intended
address, one simple way would be to load the return address
to a scratch register and pass the value to patchstub via the
scratch register. This would add extra address loading instruc-
tions and no-ops after patching. Another way would be to
have a dedicated patch stub for each call instruction (instead
of'sharing a patch stub among all call instructions and relying
on the stack for passing the return address). This solution
would cause roughly the same runtime overhead, at the cost of
additional code bloat (around 14% on average for SPEC-
CPU2006 C/C++ benchmarks).

CFI’s approach for activating return addresses following
indirect calls is discussed next. Only indirect calls through
registers are emitted in CFI-compiled code, as all indirect
calls through memory are translated to indirect calls through
registers. The instrumentation is listed in Appendix H. The
cfi-check at line 3 is an operation that performs CFI checks
and can be implemented using any CFI (e.g., MCFI as dis-
closed herein). The cfi-check also contains no-ops to align L.
to an 8-byte aligned address. In addition, CF1 inserts a 5-byte
no-op (line 4) at compile-time (Appendix H, branch (a)) so
that at load time a direct call to the patchstub can be inserted
(Appendix H, branch (b)). Note that in this case when patch-
stub gets called its stack pop instruction (line 2 in Appendix
(3) does not load L to % r11, but the runtime can straightfor-
wardly calculate [by rounding % rl1 to the next 8-byte
aligned address. After the return address is activated by the
runtime, the patchstub call is patched back to the 5-byte no-op
(Appendix H, branch (c)). The patch is atomic because an
indirect call instruction through a register in x86-64 is
encoded with either 2 or 3 bytes; therefore, the patched bytes
will always stay within [L-8, L).

Function Addresses

As discussed before, the target address cannot be activated
immediately before an indirect call because of the idempo-
tence requirement. Instead, CFI activates the address of a
function at the place when the function’s address is taken.
Consider an example shown in Appendix I, where foo and bar

US 9,361,102 B2

45

are global functions. foo’s address is taken at line 3, while
bar’s address is taken at line 5. For those functions whose
addresses are taken in the global scope, such as foo, CFI
activates their addresses at the beginning of execution; hence
no additional instrumentation and patching are required for
these function addresses. For functions whose addresses are
taken elsewhere, such as bar, CFI inserts address-activation
operations right before their address-taking sites. As an
example, Appendix J presents part of the code that is com-
piled from the example in Appendix I and the lea instruction
at line 4 in Appendix J takes the address of bar. Before the
instruction, CFI’s compilation inserts a direct call to patch-
stub_at (at line 2 in Appendix J, branch (a)), which is another
stub similar to Appendix G but invokes a separate runtime
function) to activate bar’s address. However, a mechanism is
required to translate the value passed on stack into bar’s
address, which is achieved by the label (“_picfi_bar”)
inserted at line 3. The label consists of a special prefix
(“_picfi_”) and the function’s name (bar), so the runtime can
look up the symbol table to translate the stack-passed value to
the function’s name during execution, and then looks up the
symbol table again to find the address of bar. Appropriate
no-ops are also inserted before line 2 so that the 5-byte patch-
stub_at call instruction ends at a 8-byte aligned address to
enable atomic patching. The patching replaces the call
instruction with a 5-byte no-op shown in Appendix I, branch
(b).

C++ code can also take the address of non-virtual methods.
Such an address is activated in the same way as a function
address; that is, it is activated at the place where the address is
taken.

C++ Virtual Method Addresses

CFI activates a virtual method’s address when the first
object of the virtual method’s class is instantiated. Consider
the code example in Appendix K. Methods A::bar and
B::foo’s addresses are activated at line 13, because class B has
foo declared and inherits the bar method from class A.
Method A::foo’s address is activated at line 15.

In CFI, the address-activation operations for virtual
method addresses are actually inserted into the corresponding
classes’ constructors so that, when a constructor gets first
executed, all virtual methods in its virtual table are activated.
For example, suppose Appendix L, branch (a) shows the
prologue of A’s constructor A::A, which is 8-byte aligned.
When the code is loaded into memory, as shown in Appendix
L, branch (b), CFI’s runtime changes the prologue to a direct
call to patchstub_vm (which is another stub similar to patch-
stub in Appendix G but jumps to a separate runtime function
to activate virtual methods) so that, when A::A is firstly
entered, the virtual method activation is carried out. Note that
in this case when patchstub_vm is executed, its stack pop
instruction (same as line 2 in Appendix G) does not set % r11
as the constructor’s address, so the runtime needs to calculate
it by taking the length of the patchstub_vm call instruction (5
bytes) from % rll. After its first execution, the runtime
patches the direct call back to its original bytes, and executes
the actual code of A::A. Only five bytes are modified in the
patching process, and all these five bytes reside in an 8-byte
aligned slot; therefore, the patch can be performed atomi-
cally.

The above virtual method activation procedure assumes a
class object is always constructed by calling the class’s con-
structor. Although most classes have constructors, there are
exceptions. For example, due to optimization, some construc-
tor might be inlined. For such rare cases, CFI activates the
addresses of the associated virtual methods at the beginning
of program execution.

10

15

20

25

30

35

40

45

50

55

60

65

46

Exception Handler Addresses

Exception handlers include code that implements C++
catch clauses and code that is generated by the compiler to
release resources during stack unwinding. (Compilers in x86-
64 Linux implement exception handling following the Ita-
nium C++ ABI. More details are available at https://men-
torembedded.github.io/cxx-abi/abihtml). Consider an
exception handler’s address activated when the function
where the exception handler resides gets executed for the first
time. Therefore, same as how CFI instruments and patches
C++ constructors, CFI also instruments those functions that
have exception handlers when loading the code into memory
and patches the code back to its original bytes when such
functions first get executed.

Compatibility Issues

As a defense mechanism, CFI transforms an application to
insert CFI checks and code for address activation, as well as
performing online patching. This section discusses how this
process is made compatible with typical programming con-
ventions, including dynamic linking and process forking.

The first compatibility issue concerns dynamic linking.
The ability to load/unload libraries dynamically is essential to
modern software and makes it possible to share commonly
used libraries across applications. CFI’s implementation is
based on MCFI, designed to support modularity features such
as dynamic linking and JIT compilation. Whenever a new
library is dynamically loaded, MCF1 builds a new Static CFG
(SCFG) based on the original application together with the
new library; the new SCFG will be installed and used from
that point on.

CFT’s design of using address activation is also compatible
with dynamic linking, based on the following reasoning.
When an address, say addr, is activated, all edges with addr as
the target in the SCFG are implicitly added to the Enforced
CFG (ECFG). Now suppose a library is dynamically loaded.
It triggers the building of a new SCFG, which may allow more
edges to target addr, compared to the old SCFG. However,
since addr has already been activated, the current ECFG
allows an indirect branch to target addr through newly added
edges. Therefore, address activation accommodates dynamic
linking.

CFI also supports dynamic library unloading. When a
library is unloaded, all indirect branch targets inside the
library’s code are marked inactive. This prevents all threads
from entering the library’s code because there should be no
direct branches targeting the library. (This is generally true
for libraries, but not for JITted code, in which case it is
necessary to check the remaining code for this condition.)
However, there might be threads currently running or sleep-
ing in the library’s code. Hence, it is unsafe to harvest the
library code pages at this moment; otherwise those pages
could be refilled with newly loaded library code and the
sleeping threads might resume and execute unintended
instructions. To safely handle this situation, CFI asynchro-
nously waits until it observes that all threads have executed at
least one system call or runtime trampoline call; each syscall
instruction in the libc is instrumented to increment a per-
thread counter when a syscall instruction is executed. Then
the runtime can safely reclaim the memory allocated for the
library.

The second compatibility issue concerns process forking.
In Linux, the fork system call is used to spawn child pro-
cesses. For example, the NGINX® HTTP server forks child
processes to handle user requests. During forking, all non-
shared memory pages are copied from the parent process to
the child process (typically using a copy-on-write mechanism
for efficiency). As a result, the child process has its own copy

US 9,361,102 B2

47
of the SCFG/ECFG data structure. This is good for security,
because the child and the parent processes can grow their
ECFGs separately as each has its own private copy of the data
structure.

However, there is an issue with respect to the code pages.
Recall that, to achieve secure code patching, the actual code
pages and the shadow code pages are mapped to the same
physical pages (as shown in FIG. 15). In Linux, this is
achieved by using mmap with the MAP_SHARED argument.
As a result, the actual code pages are considered shared and
the fork system call would not make private copies of the code
pages in the child process. Consequently, one would encoun-
ter the situation of having shared code pages and private CFG
data structures between the parent and the child processes.
This would create the following possibility: the parent would
activate an indirect branch target address, update its private
ECFG, and patch the code; the child would lose the opportu-
nity to patch the code and update its private ECFG, since the
address-activation instrumentation would have been patched
by the parent; the child’s subsequent normal execution would
be falsely detected as CFI violation.

To solve this problem, CFI intercepts the fork system call,
and before it is executed CFI copies the parallel-mapped code
pages to privately allocated memory and unmaps those pages.
Then fork is invoked, which copies the private code pages as
well. The runtimes in both processes next restore the parallel
mapping in their own address spaces using the saved code
bytes. This solution allows the child process to have its private
code pages and CFGs. The same solution applies to those
parallel-mapped read-only data pages (shown in FIG. 15). It
should be pointed out that this solution does not support fork
calls issued in a multi-threaded process, because the unmap-
ping would crash the program if other threads are running.
However, to the best of Applicant’s knowledge, multi-
threaded processes rarely fork child processes due to poten-
tial thread synchronization problems.

Implementation

The CFI toolchain has two tools: an LLVM-based C/C++
compiler, which is built on top of MCFI’s compiler for code
instrumentation and generation of SCFG-related metadata;
and a runtime that loads instrumented modules and monitors
their execution.

The CFI compiler is modified from Clang/IL.LVM-3.5, with
adiff result of 4,778 lines of changes. In summary, the MCFI-
specific changes to LLVM propagate metadata such as class
hierarchies and type information for generating the SCFG.
The metadata are inserted into the compiled ELF as new
sections. The instrumentation for indirect branches follows
MCEFTI. For better efficiency, Applicant applied the sandbox-
ing method of ISBoxing as described in L. Deng et al.,
“ISboxing: An Instruction Substitution Based Data Sandbox-
ing for x86 Untrusted Libraries™ in 455 IFIP Advances in
Information and Communication Technology 386-400 (2015)
to instrument indirect memory writes. In detail, the sandbox
for running applications is within [0, 4 GB), and the CFI
compiler instruments each indirect memory write instruction
by adding a 0x67 prefix, which is the 32-bit address-override
prefix. The prefix forces the CPU to clear all upper 32 bits
after computing the target address. The CFI-specific changes
to LLVM identify function address-taking instructions and
insert calls to patchstub_at before these instructions (as
detailed in the “CFI System Design” section herein). In addi-
tion, each CFI-protected application runs with instrumented
libraries. Therefore, Applicant also modified and instru-
mented standard C/C++ libraries, including libc++, libc++
abi, libunwind, and the musl libc.

10

15

20

25

30

35

40

45

50

55

60

65

48

The CFI runtime consists of 11,002 lines of C/assembly
code. The runtime is position-independent, and is injected to
an application’s ELF as its interpreter. When the application
is launched, the Linux kernel loads and executes the runtime
first. The runtime then loads the instrumented modules into
the sandbox region, creates shadow regions, and patches the
code appropriately (as detailed in the “CFI System Design”
section herein). The SCFG is generated using the metadata in
the code modules, but initially all target addresses in the
SCFG are made inactive (this encodes an implicit empty
ECFQG). The details of how SCFG is encoded can be found in
the MCFI paper. As a summary, the SCFG is encoded as two
tables: the Bary table remembers the IDs of all indirect
branches; the Tary table records the IDs of all indirect branch
targets. All IDs are 8-byte long and stored at 8-byte aligned
addresses to enable atomic updates. For each indirect branch,
MCFT’s instrumentation retrieves its ID from Bary, and the
intended target ID from Tary, then compares whether the IDs
are equal to detect CFI violation. In each ID, there are several
validity bits at fixed positions and with special values; invalid
IDs do not have those bit values at those positions. As a result,
to mark a target address inactive, CFI simply changes the
values of those validity bits to wrong values in the target’s
relevant Tary ID. During an address-activation operation, the
CFI runtime atomically marks the address active (if it is a
valid target address) by changing the values of the validity
bits back and patches the address-activation operation to no-
ops.

Security Analysis

CF1I protects programs by enforcing a fine-grained per-
input CFG. This provides multiple security benefits. First of
all, when there is dead code in a program, its ECFG makes
dead code unreachable. For instance, if a C function is never
called, then it is unreachable at runtime. This property makes
remote exploits nearly impossible for programs that never
invoke critical system functions (e.g., execve) as most attacks
rely on invoking such functions to cause damage. Examples
of'such programs include compression tools (e.g., gzip), bind
(a widely-used DNS server), and memcached, etc.; they do
not invoke execve-like functions.

For a program that does invoke critical functions, CFI
improves its security by making it hard for attackers to redi-
rect the control flow from the first instruction an attacker can
control (e.g., an indirect branch) to their targeted sensitive
function. In particular, CFI reduces the number of indirect
branch edges available for attackers. Using MCFI’s CFG as
the baseline, Applicant next present experiments that measure
CFT’s indirect branch edge reduction.

On a machine running 64-bit Linux, Applicant compiled
and instrumented all 19 SPECCPU2006 C/C++ benchmark
programs with the 03 optimization. Applicant then measured
the statistics of the enforced CFGs using the reference data
sets that are included in the benchmarks. If a benchmark
program has multiple reference data sets, Applicant chose the
one that triggered the most address-activation operations (i.e.,
the worst case). The results are shown in Table 9. The “RAA”
column shows the percentage of return addresses that are
activated at the end of the program over the return addresses
in MCFI’s CFG; the “FAA” column shows the percentage of
activated function addresses over function addresses in
MCFT’s CFG (note that not all functions are indirect-branch
targets in MCFI’s CFG; if a function’s address is never taken,
then MCFI does not allow the function to be called via an
indirect branch); the “VMA” column shows the percentage of
activated virtual method addresses; the “EHA” column shows
the percentage of activated exception handlers. Finally, the
“IBEA” column shows the percentage of indirect-branch

US 9,361,102 B2

49
edges in CFI’s ECFG at the end of the program over the
indirect-branch edges in MCFI’s CFG. Those C programs
(i.e., those above 444.namd in the table) do not have virtual
methods or exception handlers; therefore, VMA and EHA
measurements are not applicable to them.

50

of benchmarks, Applicant hypothesizes that other JavaScript
programs will not activate significantly more addresses than
those benchmarks. The ECFG growth curve of V8 when
tested over Octane 2 is shown in FIG. 18, from which one can
see that the number of target activation grows very slowly
after the initial burst, similar to what was observed on SPEC

TABLE 9 benchmarks.
ECFG statistics of SPECCPU2006 C/C++ programs N TABLE 10
Benchmark RAA FAA VMA EHA IBEA . , ,
ECFG statistics of the GOOGLE ® V8 JavaScript engine
400 perlbench 19.9% 83.2% N/A N/A 15.4%
401 bzip2 50% 41.9% N/A N/A 6.1% Benchmark RAA FAA VMA EHA IBEA
403.gcc 270% 91.7% N/A N/A 20.3% ,
499 mof S5 450% N/A N/A 7 2% No input 15.6% 86.5% 414% 22% 17.8%
433 mile 13.6% 41.9% N/A N/A 06% 15 Sunspider1.0.2 23.1% 86.8% 56.2% 22% 24.9%
445'g0bmk 354% 98.1% N/A N/A 64.4% Kraken 1.1 21.8% 86.9% 53.9% 22% 232%
456 hmmer 99% 32.9% N/A N/A 0.4% Octane 2 26.6% 87.0% 59.2% 22% 28.6%
458 sjeng 9.8% 463% N/A N/A 8.3%
462.libquantum 72% 393% N/A N/A 8.3% . . .
464.1264r0f 195% 495% N/A N/A 20.6% One security concern about CFI is that a long running
470.1bm 45% 40.0% N/A N/A 74% 20 program that keeps taking user input may be able to trigger
ﬁi-sf’hlgx 1?-23 gj-gsf’ 611‘1/5 ‘?/ 13‘1/;/ 1‘3‘-?2?’ the activation of all target addresses. For evaluation, Appli-
447:1;;1}11 7:10/2 95'/502 32:202 13:00/2 5:50/2 cant used CFI to protect an NGINX® server and used the
450.s0plex 89% 87.7% 69.8% 19.5% 7.6% sever to host a WORDPRESS® site. Then one of the authors
j;i-POVfay };?Zf 3421'51;2? g?izf 33;2? 1?-83 used almost all features of the WORDPRESS® tool for a
473'Z$etpp S3p gra% 6l 9 sa0, > session of about 20 minutes. Table 11 shows the address
483.xalancbmk 14.3% 94.5% 56.5% 27.9% 13.5% activation results. Applicant configured the NGINX® server
to use two processes: the master process was responsible for
As can be seen in the table, only a small percentage (10.4% initialization and handling administrators’ commands while a
e . . worker process created by the master processed all user
on average) of indirect branch edges are activated in the 30 .) ;
ECFG. M . o R inputs. CFI’s design allows the master and worker to have
. Most programs activate less than 20% of indirect . . L
b : . , o different ECFGs; therefore, their address activation results
ranch edges, which severely limits attackers’ capability of . e
redirecting control flow. The low percentage of edge activa- aredifferent. FIG. 14 shows Fhe target activation growth curve
tion is mostly attributed to the low percentage of return for the worker process. Similar to other tested programs, the
address activation as return addresses are the most common 35 Percentage quickly stabilized. This preliminary experiment
kind of indirect-branch targets. Function addresses are acti- SI}OWS that CFI pr. OYldeS security beneﬁt§ even fo.r long rom-
vated in higher percentages. The reason is that C programs ning programs. As discussed before, Applicant believes this is
tend to take addresses of functions early in the program and because programs have a large amount of unused code for a
store them in function-pointer tables. From the perspectiveof ~ particular input, including exception-handling code, library
security engineering, it would be better to refactor such pro- 40 code, and code for handling different configurations.
grams to dynamically take function addresses, following the
principle of least privilege. TABLE 11
Applicant also studied how the ECFG grows over time. For
each benchmark Applicant measured the number of activated ECFG statistics of the NGINX ® HTTP server’s master and worker
indirect branch targets over time. For most benchmarks (18 45 Drocesses
out of 19), most address activation happens at the beginning Benchmark RAA FAA IBEA
of execution and grows slowly (and stabilizes in most cases).
For example, FIG. 16 shows the target activation of the Master 9.3% or.1% sov
pie, . g€l | Worker 14.9% 73.5% 13.2%
400.perlbench program when tested on its longest-running
data set checkspam. The X-axis is the execution time and the 50)))
Y-axis is the proportion of activated indirect branch targets. Next, Appl.lgant br}eﬂy discusses how common software
However, Applicant also observed an outlier, 403.gcc when attacks are mitigated in CFL.
tested over the g23 data set, whose address activation curve is The first common software attack is via code injection. CFI
drawn in FIG. 17. As can be seen, the address activation enforces DEP (Data Execution Prevention) at all times; its
shows steep growth even at the end; on the other hand, it does 55 runtime enforces this by intercepting and checking all sys-
not activate more target addresses compared to other input tems calls that may change memory protection, including
data sets, which trigger similar ECFG growth as 400.per- mmap, mprotect, and munmap. Therefore, code injection
Ibench. attacks are impossible for programs that do not generate code
Applicant also built and instrumented the GOOGLE® V8 at runtime. For programs that generate code on-the-fly (i.e.,
JavaScript engine as a standalone executable. Applicant ran 60 JIT compilers), their JITted code manipulation is performed
the V8 software on three benchmark suites: Sunspider 1.0.2, by the trusted runtime following the work of RockJIT. Attack-
Kraken 1.1, and Octane 2. Applicant collected ECFG statis- ers may still inject code into the code heap, but the injected
tics for those benchmark suites in Table 10. The first “No code never violates CFI due to online code verification. For
input” row shows the statistics when no input is fed to V8. example, the injected code should never contain any system
Note that the benchmarks, especially Octane 2 (around 373K 65 call instruction. Further, JIT spraying attacks as discussed in

lines of JavaScript code) activates only slightly more targets
than the no-input case. Therefore, given the size and diversity

D. Blazakis, “Interpreter Exploitation” in Proceedings of the
4th USENIX Conference on Offensive Technologies 1-9

US 9,361,102 B2

51

(2010) are also prevented, because CFI never allows indirect
branches to_target the middle of instructions.

The second common software attack is ROP attacks. As
used herein, a “ROP gadget™ is defined to be a sequence of
instructions with an indirect branch as the last instruction. All
CFI techniques can eliminate some gadgets because they
disallow gadgets starting from the middle of instructions
specified in the CFG. However, gadget elimination is not a
good metric to differentiate CFI techniques; it does not mea-
sure how difficult it is to chain gadgets into an attack. Logi-
cally, the less edges are available for attackers, the more
difficult it is for them to chain gadgets effectively. Therefore,
Tables 9-11 show evidence that CFI provides stronger pro-
tection against ROP attacks than conventional CFI.
Performance Evaluation

As a security mechanism, CFI’s performance overhead
should be small to have a chance of being adopted in practice.
CFT’s design is geared toward having a small runtime over-
head, including the use of idempotent operations and online
code patching. Next, Applicant reports experiments on evalu-
ating the performance overhead of CFI, including runtime
and space overhead. Of the two, having a small runtime
overhead is much more important. All performance numbers
were measured on a system with an INTEL® XEON®
E3-1245 v3 processor, 16 GB memory, and 64-bit Ubuntu
14.04.2. For comparison, Applicant also measured MCFI’s
performance overhead using the same machine and compila-
tion configuration.

The SPECCPU2006 benchmark suite consists of 19 C/C++
benchmarks. Applicant compiled all of them at the O3 opti-
mization level using the CFI compilation toolchain and mea-
sured their execution time increase compared to their coun-
terparts that were compiled with a native Clang/LIVM
compiler. Each benchmark was executed three times over its
own reference data sets with a less than 1% standard devia-
tion. The runtime-overhead results are presented in FI1G. 20.
On average, CFI incurs 3.9% overhead on integer bench-
marks and 3.2% overhead over all benchmarks (including
both integer and floating-point benchmarks). In comparison,
MCFT incurs 3.7% and 2.9% on the same benchmark sets
(based on the use of a more efficient technique as described in
Deng). Compared to MCFI, CFI causes a small increase of
runtime overhead, due to address-activation operations and
execution of no-ops after patching.

The figure also shows that there are a few benchmarks (e.g.,
450.soplex) that have slight speedups after CFI’s protection.
To investigate the phenomenon, Applicant replaced the
instrumentation with no-ops and still observed speedups that
can be attributed to the extra alignments added during com-
pilation. Another note is that the runtime overhead is posi-
tively correlated with the frequency of indirect branches
executed in a run. Applicant measured the correlation using
the Pearson correlation coefficient and obtained a result of
0.74, which indicates strong correlation.

Due to instrumentation, the code size for benchmarks is
enlarged by 5.6% to 67.4%, with an average of 21.2%. Code
size of C++ programs increases more than C programs, due to
a higher density of indirect branches.

Following the RockJIT approach described herein, Appli-
cant instrumented the V8 JavaScript engine (version
3.29.88.19 on x86-64) using CFI’s compiler with the release
mode, and measured the performance overhead on the Octane
2 benchmarks. FIG. 21 shows the runtime-overhead results.
On average, 11.8% runtime overhead is incurred by CFI in
comparison to 10.7% by MCFI. As analyzed before, CF1 still
costs a bit more time than MCFI due to online address acti-
vation and patched no-ops. Also, Applicant separately calcu-

15

20

25

40

45

55

52

lated runtime-overhead results for the subset of benchmarks
that were included in Octane 1 (the predecessor of Octane 2)
because past work used Octane 1 for evaluation. CFI incurs
only 3.1% overhead over them on average, which is slightly
higher than MCFI (or RockJIT). Compared to other JIT-
compiler hardening work, such as NaCl-JIT, librando, and
SDCG, CFlincurs less overhead and provides better security.
In terms of code bloat, the code size of V8 is increased by
around 35.7% after the CFI instrumentation.

Applicant compiled nginx-1.4.0 with the O2 optimization
and measured its throughput. Using the ab command, Appli-
cant found that the binary hardened by CFI had about the
same maximum throughput as the native version. The code
size is increased by about 22.3%.

EQUIVALENTS

Although preferred embodiments of the invention have
been described using specific terms, such description is for
illustrative purposes only, and it is to be understood that
changes and variations may be made without departing from
the spirit or scope of the following claims.

INCORPORATION BY REFERENCE
The entire contents of all patents, published patent appli-

cations, and other references cited herein are hereby
expressly incorporated herein in their entireties by reference.

APPENDIX A

PSEUDO CODE FOR IMPLEMENTING UPDATE TRANSACTIONS

void TxUpdate () {
acquire(updLock);
global Version = globalVersion + 1;
updTaryTable();
sfence;
updBaryTable();
release(updLock);

¥
9 void updTaryTable() {

10 // allocate a table and init to zero
11 allocate AndInit(newTbl);
12 for (addr=CodeBase;addr<CodeLimit;addr+=4) {
13 ecn=get TaryECN(addr);
14 if (ecn >=0) {
15 entry=(addr — CodeBase) / 4;
16 newTbl[entry]=0x1; // init reserved bits
17 setECNAndVer(newTbl, entry, ecn, globalVersion);
18 }
19
20 copyTaryTable(newTbl, TaryTableBase);
21 free(newTbl);
22}
APPENDIX B
IMPLEMENTATION OF CHECK TRANSACTIONS
FOR X86-64 RETURN INSTRUCTIONS
1 TxCheck {
2 popq %rcx
3 movl %ecx, Yoecx
4 Try:
5 movl %gs:ConstBaryIndex, %edi
6 movl %gs:(%rcx), Yoesi
7 cmpl %edi, Yoesi
8 jne Check
9 jmpq *0%rex
10 Check:
11 testb $1, %sil
12 jz Halt

US 9,361,102 B2

53
APPENDIX B-continued

54
APPENDIX F

IMPLEMENTATION OF CHECK TRANSACTIONS
FOR X86-64 RETURN INSTRUCTIONS

13 cmpw %di, %osi
14 jne Try

15 Halt:

16 hit

APPENDIX C

C++ FUNCTION POINTERS

1 typedef int (*Fp)();

2 Fp fp = &getpagesize;

3 std::cout << (*fp)();

4.

5 typedef int (Animal::*memFp)() const;
6 Animal *animal = new Pigeon();

7 memFp memfp = &Animal::age;

8 std::cout << (animal->*memfp)();

APPENDIX D

MOTIVATING EXAMPLE FOR PER-INPUT CFGS

void foo(void) {

/*We omit code that handles user inputs. The
code contains a stack buffer overflow so
that attackers can control the following
return instruction’s target. */

return;

9 int main(int arge, char *argv[]) {
10 if (arge < 2) {

11 foo();
12 L1:
13 ... /* irrelevant code, omitted */
14 execve(...); /* arguments omitted */
15 }else {
16 foo();
17 L2: ..
18
19 }
APPENDIX E

EDGE-ADDITION INSTRUMENTATION
FOR THE MOTIVATING EXAMPLE

void foo(void) {

/* We omit code that handles user inputs. The
code contains a stack buffer overflow so
that attackers can control the following
return instruction’s target. */

return;

9 int main(int arge, char *argv[]) {
10 if (arge < 2) {

11 /* connect foo’s return to L1 */

12 add__edge(foo, L1); /* Instrumentation */
13 foo();

14 L1:

15 ... /* irrelevant code, omitted */

16 execve(...); /* arguments omitted */

17 }else {

18 /* connect foo’s return to L2 */

19 add__edge(foo, L2); /* Instrumentation */
20 foo();

21 L2: ..

22

23}

10

15

20

25

30

35

40

45

50

55

60

65

ACTIVATING A RETURN ADDRESS IN CFI
FOLLOWING A DIRECT CALL INSTRUCTION

1// (a) before // (b) after // (c) after

2 // loading // loading // patching

3 nop nop nop

4 call foo call patchstub call foo

SL: L: L:
APPENDIX G

PATCH STUB FOR ACTIVATING ADDRESSES

1 patchstub:
2 pop %rll
3 jmp %gs:return__address_ activate

APPENDIX H

ACTIVATING RETURN ADDRESS IN CFI:
FOLLOWING AN INDERICT CALL INSTRUCTION

1// (a) before // (b) after // (c) after

2 // loading // loading // patching

3 cfi-check %r8 cfi-check %r8 cfi-check %r8

4 nop call patchstub nop

5 call *%r8 call *%r8 call *%r8

6L: L: L:
APPENDIX I

EXAMPLE CODE FOR FUNCTION ADDRESS ACTIVATION

1 void foo(void) { }

2 void bar(void) { }

3 void (*fp) = &foo;

4 int main() {

5 void (*bp) = &bar;
6 p();
7 bp();
8}

APPENDIX J

CFI’'S INSTRUMENTATION FOR
ACTIVATING A FUNCTION ADDRESS

1// (a) after loading // (b) after patching
2 call patchstub__at nop // 5-byte nop

3 _picfi_ bar: _picfi bar:

4 lea bar(%rip), %rex lea bar(%rip), %orex

APPENDIX K

EXAMPLE C++ CODE FOR

DEMONSTRATING VIRTUAL METHODS’ ADDRESS ACTIVATION

class A {
public:
AO{)
virtual void foo(void) { }
virtual void bar(void) { }

class B: A {
public:
BO:AO{}

1
2
3
4
5
6
7
8
9
1 virtual void foo(void) { }
1

— O

US 9,361,102 B2

APPENDIX K-continued
EXAMPLE C++ CODE FOR
DEMONSTRATING VIRTUAL METHODS’ ADDRESS ACTIVATION
12 intmain() {
13 B *b =new B;
14 b->foo();
15 A *a=newA;
16 a->foo();
17 }
APPENDIX L

EXAMPLE CFI CODE FOR ACTIVATING A VIRTUAL METHOD
BY INSTRUMENTING AND PATCHING A C++ CLASS
CONSTRUCTOR A::A, WHICH IS 8-BYTE ALIGNED

1// (a) before // (b) after // (c) after
2 // loading // loading // patching
3AzA: AzA: AzA:

4 push %rbp call patchstub_vm push %rbp

5 mov %rsp,%rbp ... // omitted mov %rsp,%rbp

The invention claimed is:
1. A method of controlling execution of a computer pro-
gram, the method comprising the following runtime steps:
parsing code to identify one or more indirect branches;
creating a branch ID data structure that maps an indirect
branch location to a branch ID, which is the indirect
branch’s equivalence class ID;
creating a target ID data structure that maps a code address
to a target ID, which is an equivalence class ID to which
the address belongs; and
prior to execution of an indirect branch including a return
instruction located at an address:
obtaining the branch ID associated with the return
address from the branch ID data structure;
obtaining the target ID associated with an actual return
address for the indirect branch from the target ID data
structure;
comparing the branch ID and the target ID; and
if the branch 1D and the target 1D differ, preventing
execution of the indirect branch.
2. The method of claim 1, wherein the code resides in
multiple modules.
3. The method of claim 2, wherein the multiple modules are
dynamically loaded.
4. The method of claim 3, wherein each of the multiple
modules are separately compiled prior to dynamic loading.
5. The method of claim 3, wherein each of the multiple
modules are separately instrumented prior to dynamic load-
ing.
6. The method of claim 1, wherein each step is performed
at runtime.
7. The method of claim 1, further comprising:
if the branch ID and the target ID match, permitting execu-
tion of the indirect branch.
8. The method of claim 1, wherein the branch 1D data
structure is an array.
9. The method of claim 1, wherein the target 1D data
structure is an array of target IDs indexed by code addresses.
10. The method of claim 1, wherein the array contains ‘0’
bits at an index associated with a code address if the code
address is not a possible indirect-branch target.
11. The method of claim 1, wherein the branch IDs and the
target IDs are stored with special bit values in the least sig-
nificant bit of each byte encoding.

10

20

25

30

35

40

45

50

55

60

65

56

12. The method of claim 1, further comprising:

loading the code into a region of memory; and

designating that region as executable and readable, but not

writable.

13. The method of claim 1, wherein the branch ID data
structure and the target ID data structure are stored separately
from the code.

14. The method of claim 1, wherein the code is written in C.

15. The method of claim 1, wherein the code is written in
C++.

16. A method of controlling execution of a computer pro-
gram by a Just-In-Time (JIT) compiler, the method compris-
ing the following steps:

maintaining a shadow code heap outside the JIT compiler’s

sandbox the JIT compiler’s code heap stored in the JIT
compiler’s sandbox;

as a code region is loaded into the shadow code heap and

the JIT compiler’s code heap:
parsing the code region to identify one or more pseudo-
instruction start addresses, indirect branch target
addresses, and direct branch target addresses and add-
ing those addresses to a pseudo-instruction start
addresses (PSA) set, an indirect branch target
addresses (IBT) set, and a direct branch target (DBT)
addresses set;
veritying that:
all members of the IBT set and the DBT set are also
members of the PSA set;
all indirect branches and memory-write instructions
in the new code region are appropriately instru-
mented;
all direct branches in the new code region jump to
addresses in the DBT set; and
the new code region contains only instructions corre-
sponding to the JIT compiler;
upon successful completion of the verifying step, copy-
ing the new code region into the shadow code heap:
updating a branch ID data structure that maps an indirect
branch location to a branch ID and a target ID data
structure that maps an address to a target ID with the
addresses from the IBT set; and

prior to execution of an indirect branch including a return

instruction located at an address:

obtaining the branch ID associated with the return
address from the branch ID data structure;

obtaining the target ID associated with an actual return
address for the indirect branch from the target ID data
structure;

comparing the branch ID and the target ID; and

if the branch ID and the target ID differ, preventing
execution of the indirect branch.

17. The method of claim 16, wherein the shadow code heap
is readable and writable, but not executable.

18. The method of claim 16, wherein the pseudo-instruc-
tion start addresses, the indirect branch target addresses, and
the direct branch target addresses are stored as bitmaps.

19. The method of claim 16, wherein the verifying step
further comprises iterating through a Deterministic Finite
Automata (DFA) of all possible allowed instruction encod-
ing.

20. The method of claim 16, wherein the DFA is generated
from a trie structure of all possible allowed instruction encod-
ing.

21. The method of claim 16, further comprising:

upon receiving a request to delete the code region from the

shadow code heap and the JIT compiler’s code heap:

US 9,361,102 B2

57

determining whether direct branches outside of the code
region target any instructions within the code region;

removing code-region-related entries from the branch
1D data structure and the target ID data structure; and

determining whether any threads are running or sleeping
in the code region.

22. The method of claim 21, wherein the determining
whether any threads are running or sleeping in the code region
step further comprises waiting until each thread enters runt-
ime code after execution of the removing step.

23. The method of claim 21, wherein the determining
whether any threads are running or sleeping in the code region
step further comprises:

checking each one of a plurality of counters, each counter

associated one of the threads after execution of the
removing step;

incrementing the associated counter each time the associ-

ated thread enters the runtime code; and

checking whether each one of a plurality of counters has

changed.

24. The method of claim 16, further comprising:

generating a fine-grained control flow graph (CFG) for the

JIT compiler prior to runtime.

25. A method of controlling execution of a computer pro-
gram, the method comprising the following runtime steps:

parsing code to identify one or more indirect branches;

creating a branch ID data structure that maps an indirect
branch location to a branch ID, which is the indirect
branch’s equivalence class ID;

10

15

25

58

creating a target ID data structure that maps an address to a
target ID, which is an equivalence class ID to which the
address belongs; and
prior to execution of an indirect branch including a return
instruction located at an address:
obtaining the branch ID associated with the return
address from the branch ID data structure;

obtaining the target ID associated with an actual return
address for the indirect branch from the target ID data
structure;

marking a link between the branch ID and the return
address as active in the branch ID data structure and
the target ID data structure;

comparing the branch ID and the target ID; and

if the branch ID and the target ID differ, preventing
execution of the indirect branch.

26. The method of claim 25, further comprising:

ifthe branch ID and the target ID match, permitting execu-
tion of the indirect branch.

27. The method of claim 25, wherein the marking step

comprises invoking an idempotent operation.

28. The method of claim 25, wherein the branch ID data

structure is an array.

29. The method of claim 25, wherein the target ID data

structure is an array.

